
Transport coefficients of the Anderson model via the numerical renormalization group

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 2519

(http://iopscience.iop.org/0953-8984/6/13/013)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 12/05/2010 at 18:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/13
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


3. Phys.: Condens. Mauer 6 (19941 251%2558. Printed in the UK 

Transport coefficients of the Anderson model via the 
numerical renormalization group 

T A Costits, A C Hewsont and V ZlatiE$l 

i Institute of Physics, University of Zagreb, Croatia 

Received 14 October 1993 

Abstract. The transport coefficients of the Anderson model are calculated by extending Wilson’s 
numerical r enod imt ion  group methcd to finite-temperature Green functions. Accurate results 
for the frequency and temperature dependence of the single-particle spectral densities and 
kansport time r(m, T )  are obtained and used to exvact the temperature dependence of the 
transport coefficients in the strongcorrelation limit of the Anderson model. Resulls are obtained 
for values of the local level position ranging b m  the Kondo regime to the mixed valency and 
empty orbital regimes. The low-temperature anomalies in the resistivity. p ( T ) ,  thermopower, 
S ( T ) ,  thermal conductivity, c ( T ) ,  and Hall coefficient, R H ( T ) ,  are discussed in t c m  of the 
behaviour of the spectral densities. At low tempera” all quaotities exhibit the expected 
Fermi tiquid behaviour, p ( T )  =,&(I - c(T/TK)’), S(T)  - y T ,  K(T)/(I T = I + ~ ( T I T K ) ’ ,  
R d T )  = -Rm(I - S(T/TK)*) .  Analytic results based on Fermi liquid theoq are derived here 
for the first time for f l  and the numerical results are shown to be consistent with this coefficient. 
The range of temperatures over which universal behaviour extends is also discussed. ScaUering 
of conduction electrons in higher-angular-momentum, 1 > 0, channels is also considered and an 
expression is derived for the corresponding Vansport time and used to discuss the inBuence of the 
interference term between the resonant 1 = 0 and non-resow11 1 = 1 channels on the hansport 
properties. The presence of non-resonant scattering is shown to be particularly important for the 
thermopower at half filling, where the sign of the thermopower can depend sensitively on the 
non-resonant phase shin. Finally the relation of the results to experiment is discussed. 

Department of Mathematics, Imperial College, London, UK 

1. Introduction 

In this paper we present accurate results for the transport coefficients of the Anderson model 
obtained by extending the numerical renormalization group method [ I ,  21 to the calculation 
of finitetemperature Green functions. The Anderson model has been used extensively to 
interpret the properties of dilute magnetic alloys and a number of the local properties of 
heavy-fermion compounds. It is also of use in discussing the properties of concentrated 
Kondo systems in cases where alloying or disorder inhibit the coherence effects between 
the magnetic ions. Although many of the properties of this model are now well understood 
131, the temperature dependence of the transport coefficients has proved to be particularly 
difficult to calculate reliably. The transport coefficients require accurate expressions for both 
the temperature and frequency dependence of the impurity Green function, a quantity that is 
difficult to calculate in the strong-correlation limit of the Anderson model. Here we calculate 
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this quantity from Wilson’s numerical renormalization group method [l], which is non- 
perturbative and is therefore accurate for arbitrarily large Coulomb interactions. This method 
has played a crucial role in forming our current understanding of the Anderson model. It was 
first applied to the Kondo model by Wilson [ 11 and subsequently to the Anderson model by 
Krishnamurthy eta1 121. The two models are related via the Schrieffer-Wolfftransformation 
[4], with the Kondo model describing the low-energy physics of the Anderson model in 
the strong correlation Kondo regime. The application of the numerical renormalization 
group to these models yielded the elementary excitations, thermodynamics, fixed points 
and effective Hamiltonians around the fixed points [I ,  21. Dynamic and transport properties 
were not calculated. The calculations showed that the Kondo model has two fixed points, 
which characterize its physical properties: the local moment fixed point which describes 
the high-temperature regime and in which the conduction electrons couple weakly to the 
impurity moment, and a strong-coupling fixed point, which describes the low temperature 
regime, in which the impurity moment is quenched and the excitations are those of a local 
Fermi liquid. The parameter space of the Anderson model is larger, and the calculations 
showed that in addition to the local moment and strong-coupling fixed points there are 
two additional fixed points. The most important of these is the valence fluctuation fixed 
point, which is characteristic of the asymmetric model. In the valence fluctuation regime, 
charge fluctuations become important and the properties correspond to a model with a 
strongly renormalized temperature dependent resonant level [2]. In this paper we describe 
the transport coefficients and their relation to the corresponding spectral densities in these 
different regimes, pointing out the characteristic features that arise in each case. 

In contrast to thermodynamic properties, which have been obtained exactly by the 
Bethe Ansatz [5,6] and numerical renormalization group 11.21, the calculation of transport 
and dynamic properties have relied on approximate methods. Finiteorder perturbation in 
U calculations give accurate results in the Fermi liquid regime for spectral densities and 
thermodynamic properties up to U / n A  N 2.5, where U is the local Coulomb repulsion 
and A is the resonant level width in the Anderson model [7,8]. However, in the local 
moment regime U >> A for T >> TK, where properties depend on logarithmic terms, this 
approach breaks down. Quantum Monte Carlo approaches [lo, 111 become increasingly less 
accurate for larger values of U and lower temperatures. So far transport coefficients via this 
method have been calculated only for the symmekic Anderson model and for U / n A  < 3 
[12]. Transport coefficients have also been obtained for larger degeneracies of the local 
level N via the non-crossing approximation C13.141. A problem with this method is that 
it fails to satisfy the Fermi liquid relations at zero temperature [ 151. In a finite magnetic 
field the transport coefficients for the Kondo model were discussed in [16] on the basis of 
the Nagaoka integral equations. Recently a comprehensive and highly accurate approach 
to the calculation of dynamic properties of magnetic impurity models has been developed 
by extending the numerical renormalization group approach [17-231. This overcomes the 
above mentioned difficulties with the approximate methods. Accurate results in all regimes 
have been obtained for singleparticle spectral densities at both zero 118-221 and finite 
temperature [23,24]. These satisfy all the sum rules and Fermi liquid relations. In the 
next section we introduce the Anderson model, including terms that model the scattering 
of conduction electrons in higher (1 > 0) angular momentum channels. The transport 
coefficients are defined in terms of the transport time for conduction electrons scattering in 
both the resonant and non-resonant channels (the transport time incorporating non-resonant 
scattering of conduction electrons is derived in appendix A). The numerical renormalization 
group and its use in extracting finite-temperature Green functions and spectral densities is 
then described. We also give analytic calculations for the low-temperature behaviour of 
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the transport coefficients, based on Fermi liquid theory. These are used as a check on 
the accuracy of the numerical results. Finally we present the conclusions and indicate the 
relevance of the results to experiment. 

2. Model, transport properties and method 

2.1. The model 

The Anderson model, including non-resonant scam 
channels, is given by the following Hamiltonian: 

:00 C mn t :trons in s o  

(1) 

The first term H~mp represents the impurity and is coupled to the conduction electrons Hc 
via the hybridization term HWb. The scattering of conduction electrons in I > 0 channels 
is modelled by including uncorrelated levels, er. hybridizing with the conduction electrons. 
This is equivalent to taking into account phase shifts ql with I > 0 for the conduction 
electrons in addition to the usual 1 = 0 resonant phase shift. The charge neutrality condition 
requires that these phase shifts satisfy the Friedel sum rule [9] 

where Z is the excess charge on the impurity. 

in the impurity l = 0 level. 

2.2. Transport coe@cients 

Assuming that the conduction electrons scatter incoherently from a small concentration, 
ni << 1, of magnetic impurities, linear response theory allows the transport coefficients to 
be expressed in terms of the transport integrals [281 

The many-body effects arise from the strong Coulomb repulsion between the electrons 

where p. is the chemical potential and r(w,  T )  is the transport time. The resistivity, p ( T ) ,  
thermoelectric power, S(T), thermal conductivity, K ( T ) ,  and Hall coefficient, RH(T),  are 
given in terms of these by 
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where R&' = nilelc. In the absence of non-resonant scattering, the transport time, ro, (see 
appendix A for constant factors such as ni) is given by 

where A is the resonant level width and po is the singleparticle spectral density. The 
latter is given in terms of the resonant level Green function Go(w, T) = ((c,; c,)) and 
self-energy Z(m, T) = ER + iC' by 

t 

The transport time in the presence of non-resonant scattering is derived from the Kubo 
formula for the conductivity in appendix A. In contrast to the case of resonant scattering only 
(see e.g. [13]), the vertex corrections for the current-current correlation functions entering 
the expressions for the transport coefficients are finite when non-resonant scattering is 
included. The resulting expression for the transport time after inclusion of vertex corrections 
is 

The effects of non-resonant scattering are primarily contained in the factor [cos2q1 - 
[ReGo(o, T)/ImGo(w, T)]sin2ql, which is due to interference between the 1 = 0 and 
I = 1 channels. The non-resonant, I # 0, phaseshifts in (IO) are, like qo, in general energy 
dependent, but for the case of weak non-resonant scattering of interest here we take these 
to be constants defined by the screening charge in respective channels. Thus, 

In the T = 0 limit (but with I # 0) the transport coefficients calculated with (5)-(11) 
reduce to standard phase shift expressions, while in the limit qlgo + 0 we recover the 
usual many-body expression for the single-channel transport time (8). 

From the expressions for t ( w ,  T )  and to(w, T) we see that in order to evaluate the 
transport coefficients we require an accurate expression for the frequency and temperature 
dependent resonant Green function Go(o,T). We obtain this from the numerical 
renormalization group method as described below. 



Transport coefjicients of Anderson mdel  2523 

2.3. The numerical renormalization group method 
The numerical renormalization group for the Kondo and Anderson impurity models is 
described in [ 11 and [Z], where it was used to obtain the thermodynamic properties. Here we 
give a description of the method and its use in calculating finite-temperature Green functions 
and specifically the local Green function Go(w. T )  required for the transport time. The 
central idea in the numerical renormalization group is the importance of including all energy 
or length scales. The Hamiltonian (I) contains conduction electron states of all energies 
from the band edge D down to zero energy and states from each energy scale contribute to 
the impurity properties. To take into account these states Wilson introduced a logarithmic 
discretization of the conduction band about the Fermi level so that all energy scales were 
represented, with the greatest resolution at low energies where the many-body effects are 
most important. As shown in appendix B this logarithmic discretization approximation 
results in the following discrete Anderson model for the resonant channel, 

H = lim + A - ~ ) A - ( N - ~ ) / * H ~  

(12) 
N + X  

N - 1  
HN = A(N-l)/ZIHo + H hyb + A-""i%(f~+~sfno + f , O f n + l O ) l  

n=O 

where HO = qcbcb t + Unopor is the resonant part of the impurity, Hhyb = V O ( ~ J ~ C O ,  t 
HC) couples the impurity to a local conduction electron orbital &IO), and the last 
term describes the remaining conduction electron orbitals whose, wavefunctions have a 
large overlap with the impurity. The conduction electron orbitals neglected in the above 
discrete approximation to the full Anderson model have their wavefunctions localized away 
from the impurity site and have negligible contributions to the impurity properties (see 
appendix B and [Z] for further details). The parameter A > 1 describes the discretization 
of the conduction band. The above discretized Hamiltonian is in the form of a semi- 
infinite linear chain and can be iteratively diagonalized for increasing chain lengths N to 
obtain the eigenvalues, E,", and eigenvectors, l p ) ~ ,  on successively lower energy scales 
ON = D X N - ' / * ,  where WN is the lowest scale of HN (see appendix B for details). From 
the eigenvalues, the thermodynamic properties are obtained at a corresponding sequence of 
temperatures TN N O N / k B .  The details are given in [Z] and in appendix B. Here we show 
how the local Green functions can be extracted on successively lower energy scales. 

Consider the Green function Go@, T) = ((coo; ct )) Using H N ,  the Nth-shell Green 
function C,"(w, T )  and associated spectral density po P '  (w. T )  are given by 

Here Z N ~ )  is the partition function for the Nth cluster, and M,@ = (plco,,Ip') are the 
many-body matrix elements of the local operator coo. The latter can be evaluated recursively 
in a similar way to the evaluation of the matrix elements (plf~&) in (B14). Using the 
unitary transformation (B13) we obtain 

M:~ = ( P I C O ~ I P ' ) N  = c e ~ ~ ( ~ , r ~ ) ~ N ( q , r ' ~ ' ) ( i I ( ~ I c o ~ I r ' ) I i ' )  
r,i +,i' 



2524 T A  Cosri ef al 

Hence the matrix elements M$ can be evaluated recursively from a knowledge of the 
eigenstates of the Nth cluster, U N ( P .  r i ) ,  and the matrix elements, M$', of the previous 
cluster. For a given cluster size N the Hamiltonian HN only describes excitations in a 
limited range of width KON above the lowest scale wN present in H N ,  due to the truncation 
of the spectrum as described in appendix B. At T = 0 the spectral density is evaluated at 
o N 2". Calculating the spectral density at energies much smaller than this using HN 
is not justified, since information on lower energies is obtained in subsequent iterations, 
whereas calculating the spectral densities at much higher energies than this might introduce 
errors due to the truncation of the spectrum on the high-energy side. In evaluating (14) 
the delta functions are broadened with Gaussians of width U N  and of order ON appropriate 
to the cluster size. The broadening parameter U N  used within each energy shell is varied 
continuously so that there is no discontinuity in going between successive iterations. The 
small remaining asymmetry in the spectral features due to the larger broadening parameter 
at the higher excitations should vanish in the limit A + 1. The procedure for calculating 
finite temperature Green functions is slightly more complicated. The shell Green function 
G t ( o ,  T) and spectral density p t ( w ,  T) are only reliable for excitations w N 2 0 1  and for 
temperatures kBT << 208. For temperatures kBT >> 2" excited states not contained in HN 
would be important, whilst for temperatures kaT of order 2" transitions between excited 
states would need to be known accurately. In principle these are known from subsequent 
iterations, but are not contained with sufficient accuracy in H N .  The only transitions known 
with sufficient accuracy in HN are the ground state to excited state transitions with excitation 
energies Y 2". which is the natural energy scale of this clusrert. As long as kBT << 2" it 
is not necessary to know the lower excitations, since their conisibution to the Green function 
and spectral density for the energies w = 2 0 ~  under considerution will be negligible (note 
the delta function in (14)). From this discussion it follows that the spectral density for 
temperature T can be calculated from the shell spectral densities &U, T) at frequencies 
w N 2wi for i = 1,2, ,  . . , M until 2WM becomes of order T .  To calculate the spectral 
density at temperature T and for frequencies below 2oy, a smaller cluster is used. This 
is done because when T is larger than the frequency at which the spectral density is being 
evaluated, it is the excited states of order T contained in previous clusters that are important 
and not the excitations very much below T. The procedure outlined here requires storing 
all the matrix elements for the Green functions for each cluster size, since smaller clusters 
may be required in subsequent iterations. 

In the absence of non-resonant scattering we can calculate the transport time to(w, T) 
directly from the single-particle spectral density po(w. T) using (8) and hence the transport 
coefficients (4)-(7). In the presence of non-resonant scattering, we evaluate in addition the 
real part of Go(w, T )  and use (10) and (4x7) to calculate the transport coefficients. In the 
next section we present the numerical results obtained using this procedure. 

2.4. Low-temperature results 

Before presenting numerical results we outline some analytic results on the low temperature 
behaviour of the transport coefficients obtained by using Fermi liquid theory. These serve 
as an independent check on the accuracy of the numerical renormalization group method. 
In the following analytic calculations we restrict ourselves to the case of resonant scattering 
only so the transport time t ( w ,  T) = to(w, T). 

To extract the low temperature behaviour of the transport coefficients we use the 
Sommerfeld expansion. In the transport integrals (3) the factor (+/a@) for temperature 

. 

t The term cluster is suggested by the nomion although the deulations are in k-space. 
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T provides an energy cut-off outside the Fermi window 101 < T. The functional form of 
Go(@, T) also has an energy scale 101 << k ~ T 0  over which t(u, T) is a a slowly varying 
function. where TO = TK for the Kondo regime and kBTo = A, for the mixed valency regime. 
As a consequence, for temperatw T << TO, we can apply the Sommerfeld expansion 

The quantity h(w, T) entering the above expression is TI@, T)wm for the integral L,r. For 
the Kondo problem the tmnsport time ~ ( w ,  T) is a strong function of temperature at the 
Fermi level, so in the Sommerfeld expansion in addition to the temperature dependence 
originating from the Fermi function there is also the explicit temperature dependence of the 
transport time at the Fermi level. This is taken into account by expanding r(cF, T) in a 
Taylor series 

In the Sommerfeld expansions for the resistivity, thermopower, thermal conductivity 
and Hall coefficient the derivatives that enter are (l/z)as/am, (l/r)azs/aw2, and 
(l/s)a2r/aTZ. Since q ( w ,  T) = l/Ap&, T )  these derivatives are given by 

Using (9) we obtain for the energy derivatives at w = GF and T = 0, 

where d = zA and z = 1/(1- aER/ao),=,, is the wavefunction renormalization constant. 
In deriving the above we have used (9) and the Fermi liquid properties of the self-energy 
ER(&, 0) - o and C'(o, 0) - (w - 6~)' .  The quantity no is the local level occupancy and 
y is the linear coefficient of the low-temperature specific heat. The latter is given by [3] 
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where CO = ~ ( € 0  + ER(+, 0)). In the Kondo regime z << 1 and i\ - kBTK << A, which 
leads to a large enhancement of y since from (23) y - ~ / T K .  The Kondo temperature, TK, 
is given by [29] 

For the thermopower we require only the first energy derivative of po to extract the 
leading term. We have from (5) and (16) 

which on using (18) and (21) reduces to the Fermi liquid result, [33,35] 

(26) 
ITY T 

le1 
S(T) = - cot(rrno/2) + o(T') 

and can be checked by evaluating S. y and no within the numerical renormalization group 
technique [24]. 

To extract the other transport coefficients to lowest order in T requires the second 
derivative with respect to temperature of ro and hence an expression for the self-energy 
correct to order T 2 .  This is difficult to obtain analytically in the general case so we restrict 
ourselves to just the symmetric case. The self-energy for the symmebic model correct to 
order o2 and T 2  is given by [31,32] 

where ro is the irreducible vertex function evaluated at zero frequency [31,32]. Using (27) 
we obtain the temperature derivative 

We now use these results to first check the exact result for the T 2  coefficient of the 
resistivity first derived by Nozikres 1301 and Yamada [31,32] and then derive the exact 
coefficient for the T 2  coefficient of (K(T) /T) / (K(T) /T)T+o .  Restricting the discussion to 
the Kondo regime where the charge susceptibility is Zen, so = RA / e ,  and the particle- 
hole symmetric model where €0 + ER = 0, we find from (22) and (28) 
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where p(0) = I / e Z ? ( q ,  0) and c = nZkiTz/&2 = n4/16 = 6.088, and we have used the 
result for the symmetric case nA = ~ ~ B T K  [31,32]. The above result for c is the exact 
result obtained by Nozikes [301. Without the contribution from (28) the coefficient c would 
have been wrong by a factor of two. Away from the symmetric case the result of Nozihes 
will be modified due to terms in (18) and (19) that depend on the occupation number no, 
and also due to additional temperature dependences originating from the occupation number 
and the imaginary part of the self-energy. These are difficult to estimate analytically, but 
ow numerical results to be presented in the next section give some indication of their size. 
Most terms depend on cot(m10/2) and are expected to be small in the Kondo regime no N 1. 

Using 
le lS(T)/T = nycot(nno/2) we have 

We now prove an exact Fermi liquid result for the thermal conductivity. 

The expansion for L21 is 

Substituting this into the expression for the thermal conductivity, and using the above results 
for the derivatives, we obtain for the symmetric case in the Kondo limit "/ (F)o = 1 + B ($) 2 

T (33) 

where p = 31z4/320 = 9.44 and the linear coefficient of K is a = ( K ( T ) / T ) o  = 
n Z k ~ r ( c F ,  0)/3. h the asymmetric case there will be additional contributions to the thermal 
conductivity, which will modify the coefficient B. As discussed earlier for the resistivity 
these will be difficult to estimate but are expected to be small in the Kondo regime, so we 
expect the coefficient B to remain close to its symmetric value 31n4/320. 

The low temperature behaviour of the Hall coefficient can also be extracted. From the 
Sommerfeld expansion it can be shown that the order T 2  terms from the energy derivatives 
cancel and that the T Z  term results from the temperature dependence of r at the Fermi 
level, yielding in the symmetric case &(T) - -&(l - S(T/TK)z ) ,  where the coefficient 
6 depends on second derivatives and a fourth derivative (a4s/aw2aTZ),,,~,o. We do not 
evaluate this since as discussed in section 3, there is also a large contribution to the Hall 
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effect due to skew scattering of electrons, which should be included for a discussion of the 
Hall coefficient of magnetic impurities [39,40]. 

To summarize the analytic calculations, we see that in Fermi liquid theory in the Kondo 
regime that the transport coefficients all scale with TK at low temperature. Specifically we 
have 

p ( T )  =p(O)(1-c(T/TK)') (34) 

(35) 

(K(T)/T) / (K(T)/T)o = 1 b ( T / T d 2  (36) 
RH(T)/Rm = -S(T/TK)') (37) 

where the constants c, or, 6, y and 6 depend on r and its derivatives at the Fermi level. For 
the symmetric model one finds 

~ Y T  
le1 S ( T )  = -cOt(?O(EF)) - (T/TK) 

n4 
c = - = 6.088 

16 (38) 

(39) 

,3 = (31/320)~' = 9.44 
YKZ y = -  

6 k s T ~ .  

(40) 

(41) 

The corresponding expression for arbitrary U can be derived from a renormalized 
perturbation theory in terms of d and a renormalized interaction 

In the asymmetric case for the Kondo regime no N 1, there should be negligible 
corrections to these coefficients, the asymmetry in this regime should only affect the value 
of Tu. 

The functional form of the low temperature transport coefficients in the Kondo regime 
(34H37) and the coefficients of the leading-order terms (38)<441) in the symmetric case 
provide a check on the accuracy of the numerical renormalization group results presented 
in the next section. 

= z2ro [37]. 

3. Numerical results 

The numerical results presented here are for the strong correlation limit of the Anderson 
model, i.e. U / r A  >> 1. We take U / n A  = 4, unless otherwise indicated. The local 
level position takes values co/A = -U/2A = -2n Corresponding to the symmetric case 
and G,/A = -4, -3, -2, -l,O, +I  corresponding to the asymmetric case. We are mainly 
interested in universal effects independent of the band structure, so all parameters are small 
relative to the conduction electron half bandwidth D = 1. Specifically we used A = 0.01D. 
For cO/A = -4, -3, -2 the parameters describe the Kondo regime, whilst for Q/A = -1,O 
and so/A = +1 they describe mixed valency and empty orbital regimes respectively. In 
discussing the effects of non-resonant scattering on the transport properties we took a small 
1 = 1 phase shift. 01 = *O.Oln, f0.02n. . . . , f0.05~r. The discretization parameter A can 
be taken as low as 1.5 without encountering large errors due to the truncation of high energy 
states. The use of such a small value of A does introduce errors into the spectral densities for 
extremely low energies. These are noticeable in the symmetric case for example, where for 
sufficiently low energies o < ~ B T K ,  the symmetry of the spectral density is violated slightly. 
A larger value of A allowing the lower energies to be reached in fewer iterations could be 
used to avoid this problem, however this was not necessary in the present calculations. 
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3.1. ThemdyrtMl'cs 

The thermodynamic properties of the Anderson model have been discussed in [2], where 
the static susceptibility was calculated over the whole temperature range from the band edge 
down to temperatures T < TK. The specific heat was calculated in the strong coupling 
regime T << TK by perturbation theory on the effective Hamiltonian around the strong- 
coupling fixed point [2]. Here we briefly present the results for the local level occupancy 
no(T) and specific heat C(T).over the whole temperature regime of interest (calculations 
of C ( T )  for the screened Anderson model were presented in [21]). 

3.1.1. Local Level occupancy, no(T),  The local level occupancy no(T) can be calculated 
at a sequence of temperatures TN,  N = 1,2, . . . from the average electron number on the 
impurity and is shown in figure 1 for several values of the local level position ranging 
from the Kondo regime (€,/A = -4, -3, -2) to the mixed valency (€,/A = -1,O) and 
empty orbital regime (co/A = +I).  The only significant temperature variation occurs on 
the valence fluctuation temperature scale ksT = A = 10-2D. On the Kondo temperature 
scale. TK (listed in table I), the variation of no is insignificant, indicating that the Kondo 
resonance has negligible weight in agreement with the spectral densities presented below. 
The values of no(T = 0) are shown in table 1. The valence no(T) approaches the correct 
value (no = 1) at high temperatures. 

1 .o 

0.8 

0.6 

E 
P 

0.4 

0.2 

0.0 l o4  10" 10'' 
k,TID 

0 

Figure 1. The local level occupancy no(T) over the whole temperature range in various regimes. 
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Table 1. The firs1 column shows the local level positions used in the calculations. and the other 
columns show various data exhacted. e""' = sin2(nno/2)/xA, where no is the local level 
oecupancy at T = 0 and is e x m a d  from the partidon lunction (TK is the Haldane expression 
for the Kondo temperature given in the text). The (T/TK)* ccefhcient of the resistivity in the 
Kondo regime is defined by E = limr+o([l- ~(T)/~(O)]/(T/TK)~), which according Io Fermi 
liquid theory should be 6.088 in the symmetric case with small corrections in the asymmeuic 
Kondo repime. The linear coefficient of the thermal conductivity is U = (r(T)/T)T,o and 0 
is the (TITK)' coefficient of K(T)/uT. which should according Lo Fermi liquid theory be 9.44 
in the symmetric case. 

60 no y/ki TR/A pgwrdc' p o m G ( ~ , 0 )  %error e %enor U B 
' eo=-U/2 1.00 8055.5 0.0180 31.83 32.61 -2.4% 5.7 -6.4% 0.102 11.6 

t o  = -4A 0.93 4224.0 0.0346 31.45 32.13 -2.1% 5.8 -4.7% 0.101 135 
fo = -3A 0.88 2069.0 0.0690 31.26 31.33 -0.2% 6.4 + 5.1% 0.106 12.6 
f0 = -2A 0.78 832.0 0.1790 28.34 28.93 -2.0% 6.6 + 8.4% 0.113 13.2 
€0 = - A  0.63 281.0 05900 22.14 22.32 -0.8% - - 0.147 - 
eo = O  0.45 100.7 251W 13.18 13.36 -1.4% - - 0.246 - 
CO = +A 0.31 42.2 13.660 6.85 6.19 + 0.9% - - 0.4% - 

3.1.2. Specific heat. The specific heat, shown in figure 2, exhibits one or two distinct peaks 
depending on the position of the local level. In the Kondo regime there. are two distinct 
peaks, one at T N TK and another at T of the order of A. The low-energy peak, which is 
observed in many systems, is associated with the entropy of the magnetic impurity, so the 
area under this peak is given by kB ln(2) for the present case where the impurity has S = f. 
The higher peak is associated with the charge degrees of freedom. The same behaviour 
is found in the Bethe msafz solution [34]. In figure 3 we show the ratio C ( T ) / T .  The 
behaviour linear in T, characteristic of a Fermi liquid, is clear and we tabulate the linear 
coefficient in table 1. Finally, figure 4 shows that the specific heat is a universal function 
of T / T K  in the Kondo regime. Universality for this quantity extends up to T Y_ ~ T K  for 
the case @/A = -4. From the figure it seems very likely that in the Kondo regime and 
provided the local level is very far from the Fermi level the universal behaviour should 
extend over the whole range l 0 T ~  of the low-energy peak. 

In the mixed valency regime there is a peak slightly below the valency fluctuation 
temperature scale kBT = A and a shoulder or small peak at higher temperatures. The same 
behaviour is found in the empty orbital case. The same behaviour is found also from the 
Bethe unsatz solution [34]. 

The value of the linear coefficient of specific heat has been checked in the case of 
U = 0 and found to be in good agreement with the exact result. It has also been checked 
independently for both U = 0 and finite U [38] using the Fermi liquid relation 

where x. and xe are the spin and charge susceptibilities and can be obtained as 
thermodynamic quantities or from the corresponding dynamic susceptibilities. This Fermi 
liquid relation has been shown to be satisfied within a few per cent and provides an 
independent test of the accuracy of y from the present thermodynamic calculation [38]. 

3.2. Spectral densifies 

The spectral densities in the Kondo regime are shown in figures 5-7 for zero and finite 
temperatures. At low temperatures T << TK the spectral density is characterized by three 
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Figure 2. The specific heat in units of kB over lhe whole temperature range in the Kondo, 
mixed valency and empty orbital regimes. 

resonances: the Kondo resonance at the Fermi level of width TK and negligible weight, 
and two atomic like resonances on either side close to the bare excitation energies €0 and 
€0 + U. The latter contain most of the spectral weight and have widths of order A. The 
Kondo resonance lies at the Fermi level in the symmetric case 60 = -U/2 and above 
the Fermi level in the asymmetric case €0 z -U12 (see inset to figure 5). The width 
of the Kondo resonance is approximately TK, where TK is defined in (24) and shows the 
correct exponential dependence on €0 and U (inset to figure 5 and [23]). On increasing 
the temperature, the Kondo resonance decreases rapidly in height and eventually disappears 
completely for T >> TK (figures 6 and 7). The atomic like peaks remain temperature 
independent until kBT E A. For ksT 2 A they acquire some temperature dependence, and 
in the asymmetric case, figure 7, there is a transfer of spectral weight from the lower to 
the upper peak with increasing temperature. In the symmetric case, figure 6, no spectral 
weight can be transferred but instead the two peaks broaden with increasing temperature. 
The positions of these high-energy peaks change little with temperature. Qualitatively 
similar results for the temperature dependence of the spectral densities have been obtained 
by perturbative methods for U / z A  < 2.5 [7]. The spectral densities in the mixed valency 
and empty orbital regimes are shown in figures 8-10 for zero and finite temperatures. 
In these regimes the spectral density at low temperatures, kBT << A, is characterized 
by two resonances (see figures 8-10): one at CO of width approximately A and a much 
broader resonance at Ei, + U carrying very much less weight. In the mixed valency regime, 
eo/A E -1, the bare level is renormalized by the interactions to lie above the Fermi level 
CO > 0. The bare level is also renormalized to higher energies in the empty orbital case, 
i.e. CO > €0 2 A. On increasing temperature, the main effect in the mixed valence case is a 
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Figune 3. The specific heat exhibits Fermi liquid behaviour. C(T) = yT,  at low temperature, 
T << TK. in all panmeter regimes. Note the very much enhanced values of y in the Kondo 
cases compared to the mixed valency and empty orbital cases. 

strong temperature dependence of the resonance at 6 on a scale of order A (see figures 9 
and IO). This resonance broadens and decreases in height with increasing temperature, but 
does not completely disappear at high temperature. In addition it always remains above 
the Fermi level. The resonance at <O + U remains distinct from that at CO up to at least 
keT = 6A. Similar behaviour occurs in the empty orbital regime but the relevant energy 
scale for the temperature dependence in this case is set by ZO, 

A good test of the accuracy of the spectral densities is provided by the Friedel sum 
rule which relates the spectral density at the Fermi level to the T = 0 occupation number 
no(T = 0): 

Using no(T = 0) calculated from the partition function gives agreement to within 3% in 
all parameter regimes as shown in table 1. The values of no(T = 0) calculated from the 
spectral densities are within 3% of those calculated from the partition function, but the 
former are expected to be essentially exact since they are obtained from the low-energy 
part of the spectrum (no(T = 0) = l i m ~ ~  + o ( ~ o ) T ~ ) ,  where the method gives the highest 
resolution. It should be noted that the value of no calculated from the spectral density is 
largely due to the high-energy features at EO, where the method has less resolution due to 
the logarithmic discretization of the conduction band. However, the agreement to within 
3% between the values of no calculated by these two different methods provides additional 
evidence that this method can give accurate results for high-energy spectral features as well 
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Figwe 4. The specihc heat in the Kondo regime, showing the universal behaviour fm T < TK. 
However, when the local level position is well separated hom the Fermi level, universality 
extends up to almost IOTK over almost the entire range of the low energy peak. The two 
distinct energy scales, TK govaning the low energy peak and A >> TK governing the high- 
energy charge fluctuation peak, are clearly evident. 

as low-energy ones. The high-energy fahues have a small asymmetry due the broadening 
procedure used for the delta functions in the spectral density which should vanish in the 
limit A -+ 1 (as described earlier). 

3.3. Transport coeficients 

3.3.1. Resistivity. Results for the resistivity are shown in figure 11 for several values of 
the local level position ranging from the Kondo regime (Q/A = -U/ZA, -4, -3, -2) to 
the mixed valent (Q/A = -1,0) and empty orbital (COIL\ = + I )  regimes. The behaviour 
of the resistivity is qualitatively similar in all regimes with a monotonic increase with 
decreasing temperature. At T = 0 it reaches its limit p(0) = l/e2ro(cF,0). Since 
70 - I / p o  we have from the Friedel sum rule for the spectral density that the T = 0 
resistivity p(0) - sin2(nno/2). This is satisfied for all cases shown in figure 11 with 
the same accuracy with which the Friedel sum rule was satisfied for the spectral density 
(discussed earlier and summarized in table 1). 

In the Kondo regime at low temperature T << TK the resistivity is given by the exact 
Fermi liquid result [30-321 
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Figwp 5. The T = 0 spearal density in the Kondo regime for several positions of the lacal 
level: the lower satellite peak is at the lowl level position €0. This takes values €0 = -012 
( s y m m e ~ c  case), ~ Q / A  = -4. -3. -2 (asymmetric cases). For roJA = -2 &e lower satellite 
pe3k forms a shoulder and has partly merged wilh the Kmdo ~sonance The high-energy 
satellite peak is separaled from the lower one by the Coulomb energy U. The inset shows the 
Kondo resonance in m m  detail. The Kondo resonance becomes broader as -60 decceases. 

where c = r4/16 = 6.088, with corrections which increase with increasing asymmetry, as 
indicated in the previous section. The rescaled resistivity in the Kondo regime is shown in 
figure 12. Universal behaviour is found in the range 0 < T < ~ T K .  The inset shows the 
expected T2 Fermi liquid behaviour. In the Kondo regime the values of the T 2  coefficient 
extracted from a least-squares fit in the region 0 < T < 0 . 1 T ~  are withiin about 8% of 
the exact result c = 6.088 (see table 1). The values of c increase systematically with 
increasing asymmetry and we believe this is in part due to the correction terms discussed 
previously. However the increase in c is small, less than 8% in going from the symmetric 
to the €0 = -2A case, which indicates that the correction terms discussed earlier are also 
small in the Kondo regime. It should also be noted that the value of the coefficient depends 
sensitively on the definition of the Kondo temperature, small 'errors' in this being doubled in 
the coefficient c due to the ( T / T K ) ~  dependence. The expression for the Kondo temperature 
used here (24) is that of Haldane [29] which is appropriate for large U. For smaller values of 
U there are corrections [33] which should be taken into account in extracting the coefficient 

At high temperatures T >> TK, the resistivity is well described by the Hamann result 
C. 

[36] for the sum over parquet diagrams 

Figure 13 shows the resistivity for the symmetric case together with a fit of the Hamann 
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Figwe 6. The finite-temperahlre spechal density for the symmetric case. The in& is for 
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Figure 7. The spectral densities for the asymmetric ease in the Kondo regime. At high 
temperaIures T > A tkre is a shift of speehal weight from the lower to the upper satellite 
peak. ThE Kondo resonance, shown more c l d y  in the inset where it is plotted versus T/TK, 
disappears for T >> TK. 

result with TW = T~/1.2. The fit is very good in the range TK < T < IOTK but (45) 
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Figure 8. The T = 0 specual densities in the mixed valency ( q / A  = -LO) and empty 
ohitnl (eo/A = t I) regimes. The wonant level of width of order A is renormalized by the 
interactions to lie above Ihe Fermi level. There is no Kondo resonance in these e m s  and Lhe 
upper satellite pb at approximately €0 t U has very little weight, 

fails to give the correct Fermi liquid behaviour at low temperature. It also differs to the 
Anderson model resistivity at very high temperatures (T > 1 0 T ~ )  since the Hamman result 
is for the s-d model. The latter neglects charge fluctuations which have some influence on 
the resistivity at higher temperatures. 

The effect of non-resonant scattering on the resistivity is shown in figure 14 for the 
symmetric case. The resistivity decreases slightly at low temperature for increasing absolute 
values of the non-resonant phase shift lql 1. The overall behaviour, however, for small values 
of lq, I is the same as for resonant scattering only. The decrease with increasing 111 1 is due 
to the induced change in the local charge Sn away from no = 1. Since the resistivity attains 
its maximum for no = 1, any change away from this leads to a smaller resistivity. In 
the asymmetric case, the effect of non-resonant scattering is to decrease the resistivity for 
increasingly negative values of ql and to increase it for increasingly positive values of ql .  
This effect is also due to the induced change in the local charge due to a repulsive (ql  > 0) 
or attractive (111 e 0) local potential. 

To summarize, the resistivity is described accurately over the whole range of 
temperatures from the logarithmically dominated region T >> TK through the crossover 
region T - TK and into the low-temperature Fermi liquid region T < TK. 
3.3.2. Thempower.  The thermopower is shown in figures 15-17 for the case of resonant 
scattering only. The effect of non-resonant scattering on the thermopower is discussed 
below. In figure 15 we show the low temperature Fermi liquid behaviour of the thermopower 
given by (26). S ( T ) / y  T = (r/e)cot(xno/2), which relates the linear coefficients of the 
thermopower and specific heat to the resonant level occupancy. By extracting y from the 



Transpotl coeficients of the Anderson model 

30.0 

20.0 

F: 
3 
cl" 
v 

.. - 11 

.......... ._ TlA= 5.71 

TIA = 2.54 

T/A=O.75 

TIA = 0.22 

- T/A=O.lO 

_ _ _ _  
_ _ _  

2537 

,o 
O/A 

Figure 9. The temperature dependence of the spectral densities in the mixed valent regime. 
The renormalized resonant level of width A lying at 5 > 0 acquires a strong temperature 
dependence on a scale of T 2 A ,  
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Figure 10. The temperature dependence of the spectral densities in the empty orbital regime. 
The relevant scale is the renormalired level 5 > 0, which for the present choice of parameters is 
approximately A. On a scale of 6 2 €0 this resonance has a strong dependence on temperahue 

second derivative - 1imT-o aZf i , (T) /aT2 of the impurity free energy and no from the 
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Figure 11. The electrical resistivity in various parameter regimes over he whole temperature 
range. The curves are plotted v e n a  the reduced temperature TITO. where To = A in Ihe mixed 
valent and empty orbital regimes and To = TK in the Kondo regime. The “0-temperature 
value. p ( T  = O), is fixed by the Friedel sum rule to be sin’(nno(T = O)/z)/nA. 

spectral density or partition function we have shown elsewhere [24] that this Fermi liquid 
relation is satisfied to a high degree of accuracy in all parameter regimest. 

From figures 16 and 17 it can be seen that the thermopower has different characteristic 
behaviours in the Kondo and mixed valency regimes. The thermopower for the symmetric 
case, 60 = -U/2, is identically zero due to particle-hole symmetry (see later for a discussion 
of the effect of the non-resonant terms in this case). For the asymmetric case in the Kondo 
regime (eo/A = -4, -3, -2) it exhibits a low temperature maximum at T N T K / ~  and 
then changes sign for T > TK before reaching a broad minimum at high temperature 
k6T IT A (figure 16). In the mixed valency regime (eo/A = -1.0) there is again a 
maximum, at kBT N A/3 ,  but there is no sign change at higher temperature and there 
is only a shallow minimum at kBT N A (figure 17). The behaviour in the empty orbital 
regime (eo/A = +1) is similar to that in the mixed valency regime except that the shallow 
minimum at ~ B T  N 6 N A becomes a shoulder (figure 17). 

This complicated behaviour of the thermopower has a clear interpretation in terms 
of the temperature dependence of the spectral densities. We consider first the Kondo 
regime. The low temperature behaviour T << TK of the thennopower obtained from the 
Sommerfeld expansion S(T) - y T shows that S is positive and large due to the seongly 
enhanced values of y in the Kondo regime ( y  - I/’&). At temperatures T of order TK 
for which the thermopower is determined by the Kondo resonance, we see from (5) that 

t In the inw to figure 4 of [24] the cukes S ( T ) / T  were labelled in thc meme order to ule mrnet one shown 
here for different local level positions. 
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Fi- 12. The scaled resistivity in the Kondo regime showing Ihe universal behaviour Q low 
temperature up to approximately STK. The inset for 1 - @(T)/p(O)) versus (T/TK)’ shows 
the expected Femd liquid behaviour for khe resistivity at low temperahlre T c 0 . 1 T ~ .  The 
mefficienb c, of the T z  term in the resistivity is found to lie within 8% of khe exact result in 
all cases. 

the sign of the thermopower depends on the slope of the spectral density at the Fermi level 
(a&@, T)/ao),,.  This slope decreases with increasing temperature as a result of the 
strong temperature dependence of the Kondo resonance. The disappearance of the Kondo 
resonance gives rise to increased scattering of holes relative to electrons which causes the 
thermopower to change sign for T > T,. This sign change at T = TK is characteristic 
of the Kondo regime. As the temperature is increased to kBT N A, charge fluctuations 
become increasingly more important and there is a bansfer of spectral weight from the lower 
satellite peak at €0 to the upper one at + U (figure 7). Holes are scattered increasingly 
less than electrons as the temperature is increased and therefore the thermopower increases 
for kBT > A. Hence a broad minimum arises at kr,T N A. 

The behaviour of the thennopower in the mixed valency and empty orbital regimes can 
be explained in a similar way in terms of the temperature dependence of the spectral density. 
In the mixed valency regime the interactions renonnalize the bare local level EO to lie at 
Q above the Fermi level (see figure 8). The thermopower can be analysed in terms of the 
resonance at of width A in a similar way to the above analysis for the Kondo resonance. 
The low-temperature maximum occurs at ~ B T  N A/3 but the low-temperature enhancement 
S ( T )  - yT is only of order y - l /A (neglecting the phase factor cot(rrno/2)) . There is 
a maximum at ~ B T  N A, beyond which the thermopower decreases. In this case however, 
the resonance above the Fermi level does not disappear but is increasingly broadened with 
temperature (see figure 9). Hence the thennopower does not change sign. In the empty 
orbital regime, the behaviour of the thennopower can be similarly explained in terms of the 
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Figure 14. The inEuence of non-resonant scattering of conduction electrons on the resistivity 
in the symmehic Kondo regime. 

temperature dependence of the spectral density. 
We now consider the effect of non-resonant scattering of conduction electrons on the 
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thermopower. The effects of non-resonant scattering are most dramatic for the symmetric 
case, where in the absence of such scattering the thermopower vanishes identically. The 
presence of non-resonant scattering leads to interference effects between the resonant I = 0 
channel and non-resonant 1 = 1 channels making the thermopower finite even for the 
symmetric case (see appendix A for details of how these interference terms arise). This is 
seen explicitly at low temperatures by applying the Sommerfeld expansion to (5) keeping 
the full hansport time with inclusion of non-resonant terms, 

Here, q~(w) is the resonant phase shift, 

and is the phase shift of conduction electrons scattering in the I = 1 channel (p,, 
contains the effects of higher-angular-momentum scauering and was discussed earlier). For 
qo(cp) = rr/2 corresponding to the symmetric case the above expression gives a finite 
thermopower due to the non-resonant tenns. 

In figure 18 the thennopower for the symmetric case for several values of the non- 
resonant phase shift is shown. The thennopower can be positive or negative at low 
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Figure 16. ?'he thennopower S ( T )  in the Kondo regime. The lowenergy maximum is at a 
temperaiule T in fhe range T d 3  < T < TK whilsi the bmad minimum af higher tempemure is 
a f T ~ 1 A .  

temperature depending on whether qr is negative or positive. This is clear since a positive 
q1 corresponds to a repulsive potential, which decreases the charge on the impurity making 
the thennopower the same as for less than half filling, i.e. positive at low temperature, and 
conversely for q1 negative. 

The effect of non-resonant scattering of conduction electrons on the thermopower in the 
asymmeisic cases is shown in figure 19 and figure 20 for the Kondo and mixed valency 
cases respectively. In the mixed valency w e  we see that a small positive non-resonant 
phase shift can change the minimum at kBT N A (figure 20) into a shoulder making the 
thennopower resemble that of the empty orbital case. On the other hand a small negative 
non-resonant phase shift accentuates the minimum at kgT Y A and makes the thennopower 
more similar to that of the Kondo case. It is possible that a sufficiently large negative phase 
shift could make the thermopower in the mixed valency case change sign, but in this case, 
which corresponds to strong non-resonant scattering, the frequency dependence of q ,  should 
be taken into account (see [27]). In the Kondo regime similar trends are found on varying 
the non-resonant phase shift from negative to positive values. In the weak Kondo regime, 
E O / A  = -2 (figure 19), for which T, = O.IBA, a sufficiently large value for q1 > 0.042 
can change the sign of the high-energy minimum at kBT Y A, making the thennopower 
resemble that of the mixed valency case. The effects of non-resonant scattering can be 
understood as for the symmetric case as arising from a change in the local screening charge 
on the impurity. A difference in the thennopower of figure 18 for the symmetric case and 
figure 19 for the asymmetric case is that the extremum at kBT N A in the symmetric case is 
very much suppressed. This is expected since this extremum is associated with the charge 
fluctuations, which in the symmetric case are strongly suppressed and are only included 
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Figure 17. The thennopower S(T) m the mixed valency and emply orbital regimes. The low- 
energy maximum in the mixed valency case is in the range AI3 < T < A and the minimum at 
higher temperafure iS at T L. A. In the emply orbital case, there is only a shoulder at T = A. 

in the present case as a result of the non-resonant scattering terms. We see then that the 
thermopower is sensitive to small changes in the local environment of the magnetic ion, 
which has been modelled here hy including non-resonant scattering of conduction electrons. 
The sensitivity arises because of interference between the l = 1 channel and the resonant 
I = 0 channel, in contrast to the 1 z 1 channels, which have negligible influence since they 
do not couple to the resonant channel. 

3.3.3. Thermal conductiviry and Lorenz number. The thermal conductivity is shown in 
figure 21. It shows the expected Fermi liquid behaviour K(T) /cYT - 1 + ~ ( T / T K ) ’  at 
low temperature (T << TK) with linear coefficient CY - r(6p) - 1/sin2(nno/2) as shown 
in figure 22 and in accordance with the Friedel sum rule. The TZ coefficient p, i.e. the 
T 3  coefficient of K ( T ) ,  has also been extracted from the numerical results by using a least 
squares fit in the region 0 < T / T K  < 0.01. The T 2  behaviour is shown in figure 23 and 
the results extracted for p are listed in table 1. It lies within 20-40 % of the exact result 
p = 9.44 calculated above using Fermi liquid theory. The agreement is reasonable since we 
are dealing with T3 corrections to K ( T )  and the extraction of f l  also relies on an accurate 
extraction of the linear coefficient CY. The resistivity coefficient arose from a TZ term and 
could consequently be determined more accurately. In addition, corrections to the Haldane 
expression for the Kondo temperature discussed for the resistivity are also expected to be 
more important for the coefficient /3 since any ‘error’ in TK will me enhanced in fl due to 
the (T/TK)3 dependence. A distinct low-temperature anomaly is absent from K ( T ) ,  and its 
behaviour is similar in both the Kondo and mixed valency regimes. Universality in K ( T ) / T  
extends up to at least l 0 T ~  in the Kondo regime. The Lorenz number ratio LILO where 



2544 T A  Costi et a1 

0.10 

p.,, \ 7, = -0.02% 

7, =d.OllC 

.............. 

0.05 

0.00 

-0.05 

-0.10 ' 
0.0 20.0 40.0 60.0 80.0 

TmK 

Figure IS. The thempawer S(T) in the symmetric case with the inclusion of non-resormt 
scaftering. The lowenergy minimum is at T 2 TK and the extremum ;It higher temperature is 
al T '5 5 0 7 ~  2 0.9A. 

L = Kp/T and LO = n 2 k ~ / 3 e  is shown in figure 24. Deviations from the Wiedemann- 
Franz law are found for T > 0 . 1 T ~ .  In the Kondo regime, L(T) ,  like K ( T ) ,  is universal 
up to approximately 1 0 T ~ .  In the Kondo regime it also exhibits a maximum at T N TK 
whereas in the mixed valency regime there is only a shoulder at k&" E A, and similarly 
in the empty orbital regime. The inclusion of weak non-resonant scattering has little effect 
on K ( T ) .  

3.3.4. Hall coefficient. Figure 25 shows the temperature dependence of the Hall coefficient. 
This quantity exhibits a Characteristic low temperature peak at T N TK in the Kondo regime 
but not in the mixed valency or empty orbital regimes. Universality for this quantity persists 
only up to T Y TK. Here we have only considered the ordinary Hall effect and have shown 
that this exhibits an anomaly at T _N TK. Another important contribution to the Hall 
effect arises f" skew scattering of conduction electrons. Up spin electrons are scattered 
differently in a magnetic field from down spin electrons as a result of the splitting of the 
Kondo resonance by the magnetic field. This contribution could be much more important 
than that originating from the Lorenz term considered here, but its treatment is outside the 
scope of the present work. 

4. Discussion and conclusions 

In this paper we have given a detailed description of the generalization of the numerical 
renormalization group to the calculation of finite-temperature Green functions of the 
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Anderson model. The method was applied to obtain the single-particle s p e d  densities and 
transport properties of the Anderson model in the strong-correlation Limit U f n A  >> 1 for a 
range of temperatures and parameter regimes, as well as the occupation number and specific 
heat. We distinguish three parameter regimes in the limit of strong correlation. The Kondo 
regime, 60 << -A ,  no = 1, characterized by a low energy scale ksTo = ~ B T K ,  the valence 
fluctuation regime, -A < g < 0, 0.3 < no < 0.8, characterized by a low-energy scale 
k& = A, and the empty orbital regime, EO > A ,  no < 0.3, characterized by an energy 
scale k ~ T o  - 4 N €0. We also distinguish three temperature ranges, T << TO corresponding 
to the Fermi liquid regime, T >> To corresponding to the high temperature perturbative 
regime and T N To corresponding to the cross-over region. A consistent picture. of the 
thermodynamics, spectral densities and transport coefficients emerges from the numerical 
renormalization group calculations in these different regimes. 

The calculations of the singleparticle excitation specmm show that at low temperatures 
the spectral function in the Kondo regime is characterized by a Kondo resonance of 
negligible spectral weight centred around E F ,  and two atomic l i e  monances at and 
60 + U, which carry most of the spectral weight. That below the Fermi level at €0 contains 
most of the screening charge while that above at €0 + U is empty. This picture is well 
known and emerged very clearly in the finite-order perturbation calculations of Yamada 
[31]. Using the numerical renormalization technique we have been able to calculate it more 
accurately and obtain the correct exponential dependence of the width TK on EO and U, 
and also to describe the high-temperature regime, where there are corrections that depend 
logarithmically on T. 



2546 T A  Costi et a1 

er- 

I .o 

0.5 

0.0 
0.0 0.5 1 .o 5 

Ngu~e 20. The effect of including non-mnnnnt scaktering on the thempower S(T) in the 
mixed valency regime €0 = 0. There is only a broad maximum at T I AJ3, which disappears 
when the non-mnnmt phase-shift 01 is increased. 

The spectral function for valence fluctuators is characterized by two peaks only: a 
partially filled one at the renormalized position 6 > €.E and an empty one at 6 + U. In 
the empty orbital regime the low-temperature spectral function in the strong-coupling limit 
is just an empty virmal bound state. The characteristic low-energy scale for the spectral 
function is set by TO. These features of the spectral density are fully consistent with the 
Fermi liquid ground-state as revealed by the thermodyamics [2]. The Friedel sum rule, which 
is a good test of the accuracy of the method at both high and low energies, was found to be 
satisfied to within 3% accuracy in all parameter regimes. Increase of temperature leads to 
a renormalization of the excitation spectrum and for T > To the spectral function changes 
in a qualitative way [7]. At high temperatures the spectral function is characterized by two 
atomic like peaks separated in energy by U, consistent with the thermodynamic properties, 
which exhibit local moment behaviour. In the mixed valency and empty orbital regimes the 
higher peak is strongly suppressed. 

The transport coefficients for the Anderson model can be related to the transport 
relaxation time by using linear response theory. This can be further related to the single- 
particle spectral function, which allows us to discuss the transport coefficients in terms of 
elemenhy excitations in the resonant channel. The characteristic low-energy scale of the 
spectral function, q, defines the temperature scale for transpoa propehes. 

In the Kondo regime at low temperature, T << TO = TK, we showed that the transport 
coefficients agreed with the predictions of Fermi liquid theory. For T << TK,  the localized 
spins are screened and the transport currents relax via excitations in the local Fermi 
liquid state formed by the Kondo screening mechanism. The transport coefficients were 
characterized by power law dependences on T / T K  (34)-(37) with universal coefficients for 
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Figure 21. The thermal conductivity (K(T)/T)/(K(T)/T)O plotted versus y T. The solid lines 
with symbols are for the Kondo regime. The mixed valency cases are €0 = -A  (long dashed) 
and fa = 0 (dashed), and €0 = -A (dolted) is the empty orbital case. (The single point for thp 
symmetric case that falls off the universal c w e  is due to inswflicient accuracy of the integrations 
at that panicular temperature.) 

Figure 22. The Linear coefficient o of the thermal conductivity, o = (c(T)/T)o, versus 
1/sin~(xno/2) (see tabable I for the values). 
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Figure 23. The T 2  coefficient of x(T) /u  T in the Kondo regime (see lable 1 for the values). 
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Figure 23. The T 2  coefficient of x(T) /u  T in the Kondo regime (see lable 1 for the values). 
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appropriately scaled quantities. The numerical results for the T z  term of the resistivity 
and the T 3  term of the thermal conductivity in the symmetric case agreed remarkably well 
with the analytic values deduced from Fermi liquid theory. With increasing asymmetry the 
numerical results indicate that these coefficients change only slightly for no > 0.8. The 
thermopower shows universal behaviour for T < TK when rescaled by its zero-temperature 
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F i r e  25. The Hall coefficient R(T)/Rid versus y T where Rj.r = -l/nlelc. 

slope [26]. Universality was found to extend up to at least l 0 T ~  for the resistivity and 
thermal conductivity but only up to TK for the Hall coefficient. The transport properties in 
this regime are understood in terms of excitations in the strongly renormalized Fermi liquid 
ground state. On increasing temperature through the cross-over region T N TK logarithmic 
terms become important for the resistivity and these are clearly seen for T > TK. The 
thermopower changes sign, a result of the disappearance for T z TK of the Kondo resonance 
in the single-particle spectral density. There is also a minimum in the Hall coefficient at 
T N TK. In the high temperature perturbative regime, T >> TK, the spectrd density consists 
of two peaks, the occupancy no approaches unity and the transport properties are those of 
electrons coupled weakly to local spins. The thermopower develops a broad minimum at 
ksT N A due to a shift of spectral weight from the peak below the Fermi level to that 
above as charge Buctuations become important. 

In the mixed valency and empty orbital regimes the transport coefficients at low 
temperature T << TO again reflect the relaxation of the lransport currents via the excitations 
in the renormalized local Fermi liquid ground state. However, since A >> ~ T K ,  these 
renormalizations of order 1/To are smaller than those for the Kondo case. The low 
temperature transport coefficients again have power law dependences on Tf To. but the 
coefficients are non-universal and depend strongly on the occupation of the localized level 

Finally, we investigated the effects of non-resonant scattering of conduction electrons 
on the temperature dependence of the transport properties. A general expression for the 
transport time in the presence of such scattering was derived, which shows that the resulting 
interference effects between the resonant and non-resonant channels are not negligible. 
Hence, to relate the transport coefficients of the Anderson model to the experimental data 
on dilute alloys one should take into account the non-resonant scattering. For example, 
the overall shape of the thermopower curves calculated for the Anderson model with two 
scattering channels resembles quite strikingly the experimental data. The interference effects 
between resonant and non-resonant scattering channels led to a strong dependence of the sign 
of the thermopower on the non-resonant phase shift. This type of effect could be important 

no. 
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for systems with no close to unity or for systems with a Kondo resonance approximately 
symmetric about the Fermi level. Doping such systems with non-magnetic impurities could 
lead to the above type of interference effects, making the sign of the thermopower sensitive 
to the local environment. Such effects have been observed [41]. In the symmetric Kondo 
regime the inclusion of non-resonant scattering was important to obtain the non-vanishing 
enhanced thermopowers for half filled systems (the no = 1). 

To summarize, we have shown that the numerical renormalization group method 
allows a unified description of the transport, thermodynamic and spectral properties of 
the Anderson model in the strong correlation limit. The different features below and above 
the characteristic scale TO reflect differences in the structure of the excitation spechum et 
high and low temperatures. The NRG method presented here could be used to provide further 
insights into the behaviour of the Anderson model. For instance, the results for the spectral 
density could be used to deduce the spin and charge densities induced in the conduction 
electrons at arbitrary distances from the impurity [42]. The interference effects for the 
transport properties could also be studied for two Kondo (spin !j) impurities or for the case 
of the Kondo effect in the I = 0 channel and a virtual bound state in the I = 1 channel. This 
would be relevant to rare earth systems in which there is an excited crystal electric field 
level close to the Kondo ground state. There are many other similarly interesting physical 
situations that occur in particular materials. They could be modelled and a broad range of 
physical properties calculated via this one technique to compare with experiment. 
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Appendix A. Derivation ofthe transport time in the presence of non-resonant scattering 

The transport time for scattering from a dilute concentration, ni << 1, of magnetic impurities 
described by the Hamiltonian (1) can be obtained by examining the Kubo expression for 
the conductivity o ( T )  

1 
a(T)  = - lim - Im lI,,(w) 

m+O CI) 

where the current-current correlation function n(iw) = -(1/3V) eimr(T7j(r)j(0)) and 
the current operator is that for free electrons j = - ( e /m)  Cleo k c ~ , c ~ , .  The diagrammatic 
representation of n(i.) i s  shown in figure Al. In the absence of non-resonant scattering 
the vertex corrections vanish identically [I31 in the dilute limit leaving just the (dressed) 
bubble diagram Eo. In terms of the dressed conduction electron Green function G(k, w )  
this is 
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Here we evaluate the conductivity including the vertex corrections since these give rise to 
interference terms between the I = 0 and I = 1 channels. The conductivity is given by [28] 

(A3) a(T) = - / (2) [ P ( E  - is, E + is) - Re[P(E +i& E + is)]]dc 

where the singular part behaving like l /n i  originates from the first term with P(E+i& E -is) 
[28]. The latter is given in terms of the conduction electron Green function G ( k ,  E) and 
vector vertex function r by 

P(E - is, 6 + is) = -- x G ( k ,  E + i8)G(k, E - i6)k - r(k, E - is, E +is). 

The vertex function r satisfies the following equation: 

r (k ,  c-G, €+is) = k+ 1 $$r(kr, €-is, E+is)Wkt,(e-i&, c+is)G(k’, c--ia)G(c+ia) 

(-45) 

1 +m 

2X -m 

(A4) 
2e2 1 
3m2V L 

where W is the irreducible vertex. 

Figure Al. The diagrammatic representation of the c m n t - c m n t  correlation function n ( io ) .  
The solid lines represent full conduction electron Green functions and r is the two-particle 
scattering vertex. 

To solve this equation we introduce a scalar vertex function y1 defined by r ( k ,  E - 
is, E + is) = k yl(k, E) and note that the Green function product in (A5) is simply 
A(k,  c)/lX1(k, E ) [  where A(k,  E) is the spectral density and X1(k, E) the imaginary part of 
the self-energy of the conduction electrons. In the dilute limit, nj -+ 0, we also have that 
[28] Wkt’(E - is, E + is) -+ n i T u , ( ~  - i 8 ) T k , t ( ~  + is), where T is the energy dependent 
T-matrix, IC’(k’, ck,jl 4 nil ImTk’ttl and A(k’, E) -+ k S ( c  -cy). The resulting equation 
for the scalar vertex function after some algebra becomes 

sin8’cos8’6(E - E E ) T ~ ~ ( E  - iS)TEk(c + iA)yl(k’, E)  

I h Tkw (E f is)! 
(A6) 

where 8’ defined by cos(8’) = k. k‘/k2 is the angle between incoming and scattered k-states 
and a free electron density of states has been used to rewrite the integrals. The T-matrix 
in the denominator of (A6) is for forward scattering only so it is independent of e’ and 
can therefore be taken outside the integral and evaluated at K = k (note the 8 function in 

n ( k ,  E )  = ‘1 + - 4 x  
d E k ( d e ‘ 6  “ S  
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(A6)). The scalar vertex function y~ (k', E )  is also independent of angle and can also be 
taken outside the integral (evaluated at k' = k) .  Hence the closed expression 

is obtained with solution 

In the above expressions &,, given by 

contains the interference effects. 

is) (using the previously quoted expression for the Green function product) gives 
Substituting the scalar vertex function M from (A8) into the expression for P(E -8, E + 

and substituting the latter into the conductivity formula (AI) gives for the transport time r 
the expression 

mk 
47r T ( E k .  ?')-I = ki(l hTkx(Ek + i6)l - -1k). (All) 

The first part of this expression is just the usual result for s-wave scattering only and the 
second part is the contribution from interference effects between the resonant 1 = 0 channel 
and the non-resonant channels. To evaluate (A9) and (All)  we need the T-matrix. This 
can be obtained for the Hamiltonian (1) by aplying the equation of motion method to the 
conduction eiectron Green function Gu,,, = ((cko; ckC)).  This gives 

Gkto(w + is) = GLc(w + is) + G$,(w + is)T&i~ + iS)Gktu(w + is) 
where 

t 

(-412) 

T~~,(~'(o + is) = v ~ ~ G ~ ( w  + is)Vofi + K ~ ~ G ( ( O J  + i8)Fmk+ (A13) 

GL,  is the unperturbed conduction electron Green function and Gl, 1 = 0,1,. . . are the 
local Green functions for the I = 0,1, .  . . channels respectively. The hybridization matrix 
elements Q,,,k have the angular dependence Vjmr = (k lv l ! ,  m )  - Vj,g,(&) so the T- 
matrix has the form 

k l m  

Tu,(o+iS) = c ( U  + l)S(cos(0'))FxG((w+ iS)& ( ~ 1 4 )  
k 0  

= VmGo(wfi8)Vw +3cos(8')V1rGl(w+is)V,t,+...  (A15) 
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where E, fi,(Qk)Y,,(Qw) - (21 + I)fi(cos(B')) has been used and 0' = k .  k'/k2. The T 
matrix has an explicit dependence on the angle e', which gives rise to interference effects 
between the resonant and non-resonant channels when substituted into the expression for 
the transport time (AI 1). These interference effects arise in the expression for 1, as cross 
terms involving G ~ G I  + COG;. On carrying out the 8' integrations in (AS) and expressing 
the non-resonant Green function Cl(@) in terms of a corresponding phase shift ql(w) we 
arrive at the formula for the transport time of the multi-channel Anderson impurity model: 

The resonant part of the transport time, %(U, T) is given by the usual T matrix expression 
in the absence of the interference effects 

where A is the unrenormdized width of the 1 = 0 resonance and Go@, T )  is the I = 0 
Green function, which describes the many-body effects. The analysis here was for the 
electrical conductivity. The same transport time (A16) is found by repeating this analysis 
for the other current-current correlation functions. (In the above expressions for the inverse 
&ansport times, a constant factor 2ni/N(O), where N ( 0 )  is the unperturbed conduction 
electron density of states at the Fermi level, has been omitted). 

Appendix B. The numerical renormalization group method 

The following continuum version for the wonant part of (1) is useful for introducing the 
logarithmic discretization approximation [2]: 

In obtaining this from the resonant part of (1). a partial wave expansion for the conduction 
states around the impurity has been used and the Hamiltonian has been written in the energy 
representation. The approximation has been made that A(w) = I( Ek Iv~kl*S(o - ck)  = A 
is independent of frequency so that only s-wave partial wave states couple to the impurity 
(with strength VO = .,/-). All energies are measured relative to the half bandwidth 
D = 1 and we use the convention that repeated spin indices are summed over (full details of 
the above may be found in [2]). The continuum conduction band [-I, I] is now discretized 
as shown in figure B1 and a new set of basis states for the conduction electrons is introduced 
in each interval f[A-("+'), A-"] using the following wavefunctions: 

Here p is a Fourier harmonic index and on = k A " / ( l  - A-'). The operators c~,, can 
then be expanded in terms of new operators a,,,, b,, labelled by the interval n and the 
harmonic index p 
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In terms of these operators, the Hamiltonian (B 1) becomes [2] 

H = EOCO.COC + (InotmJ + Vo(l - A-1)1 '2C A-"'z((uAoo + bnb)ca. + coo(anb + b,o,)) 
a 

t t t 
"4 

The coupling of the local state cb to only the p = 0 harmonic is a consequence of 
the assumption that the hybridization matrix elements are independent of energy. Hence 
the conduction electron orbitals a,,, b., for p # 0 only couple to the impurity state cb 
indirectly via their coupling to the uno, bd  in the last term of (B4). This coupling is weak, 
being proportional to (1 - A-'), so these states may be expected to contribute little to the 
impurity properties compared to the p = 0 states. This is indeed the case as can be seen in 
figure B2, where the probability density in real space of the wave packet states en,@) is 
shown. It can be seen that the p > 0 orbitals are localized at increasing distances from the 
impurity, whereas the p = 0 orbitals overlap strongly with the impurity. This together with 
their weak coupling to the impurity ensures that they can be neglected in calculating local 
impurity properties. This logarithmic disc%&ation approximation has been shown to give 
rapidly convergent results (as A + 1) for thermodynamic averages, the deviations away 
from the continuum limit, A = 1, being proportional to e-n'lIn(A) [1,21. The approximation 
amounts to approximating the continuum conduction band Hamiltonian, H,, by a discrete 
one: 

where the p index has now been dropped since only p = 0 states are included. This discrete 
Hamiltonian is more convenient for a numerical treatment. 

Figure B1. 
parameter A > 1. 

The conduction band [ - I ,  + I ]  logarithmidly discretired with discretiwtion 
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F w r e  B2. The normalized conduction electron orbitals InFrll.,(r)l* as a function of distance 
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The next step is to convert the discrete Hamiltonian @6) into a linear chain form suitable 
for an iterative diagonalization starting from a small chain and diagonalizing sucessively 
longer chains by adding a site or energy shell at each stage. If we define a new local 
conduction electron orbital by IOU) = f,Ivac) t where 

then the Lanczos algorithm can be used with starting vector 100) to tri-diagonalize H,: 

where en, A., n = 0.1, . . . are the site and hopping energies respectively. For a half filled 
symmetric conduction band the E, are all zero and Wilson has obtained the expression 
A " - 2  - '(1 + A-')A"''tn, where f n  = f n ( A )  + 1 for n >> 1. This converts (B6) into a 
semi-infinite chain with the impurity at the origin coupled to the local conduction state IOU) 
via the hybridization VO (re-scaled to keep 100 > normalized) 

m t 1 
H = ~ocO,coD + unotnol+ VdfLc@ + HC) + 5'1 + A-I)~A,(f~+l , fn . ,  + f.i,f.+l.,) 

n=O 
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In (B10) we have defined a sequence of rescaled Hamiltonians HN whose smallest term is 
always of order unity (the bare parameters 60, U, VO are also rescaled by the factor i (1  + 
A-’)). The procedure is now to diagonalize this sequence of Hamiltonians iteratively and 
extract the spectrum and eigenstates on successively lower energy scales ON - A-(N-l)/z. 
The procedure starts by diagonalizing the impurity part, f f ~  = EOC&COO + Uno+no~ of (B9) 
and then adding the coupling to the local conduction electron orbital V o ( f L c ~ ,  + HC). 
Successive energy shells hn(f~+lafno + firfntlC), n = 0,1,. . . are then added and the 
resulting Hamiltonian diagonalized to give the many-body eigenvalues E,” and eigenvectors 
[ p ) N  of the corresponding shell or cluster. The total number of electrons, Ne, total spin, 
S, and z-component S,, of total spin, are conserved quantities and can be used to label the 
eigenstates together with an index r = 1, Ries where Rics  is the dimension of the subspace 
( N J ) .  If UN has been diagonalized, HN = E ~ c S X ~ e S S z , N o S s z , ,  then from (B10) 
the matrix for HN+I can be obtained from 

HNtI  = h’”HN +cN(f , ! ,+ io fNc  f f i o f N + l o ) .  

The basis used for HN+I is the product basis Ip. i) of eigenstates, Ip) = IN,SS,r), of H N ,  
and states l i )  from site N + 1 (i.e. li) = IO), I f ) ,  I J), I t.l)). In this basis the matrix 
elements of HN+I are 

( P -  ~lHN+Ik?~ .f) = A’’z&.w~i,jE,” + ~ N ( ( P , i l f j $ + . + l o f N ~ l q . j )  + ( P , i l f j $ , f N + l c k ? , j ) )  

= Af’zSp.q6i,jE,” + ~ N ( - 1 ) “ , ‘ ( ( i l f ~ + ~ , l j ) ( p l f N D . I q )  

+ (plfj$, Iq) ( i I f N t i m  l j ) )  (BIZ) 

where f , + l 0  have been commuted past the eigenstates Ip) ,  14) with a sign change (-l)Ne,q 
depending on the number of electrons, Ne,9 = Ne+,  in these states. Since HN is already 
diagonalized the matrix elements (plfNm1q) can be calculated as follows. The unitary 
transformation between the eigenstates of UN and the product basis is known and is given 
by 

IAN = u N ( p ,  r i ) l r )N- l l i )  ( B W  

where U&, r i )  is the matrix of eigenvectors of H N ,  1 T ) N - l  denotes an eigenvector of the 
previous cluster ( N  - 1) and li) is one of the four states given above, but for site N (not 
N + 1). Hence the required matrix elements are given by 

r.i 

which involves only known expressions. The matrix elements ( i l f , + ~ ~ l j )  in (B12) are 
also known so the mairix of HN+I can be set up in terms of the eigenvalues and matrix 
elements in (B14). HN+I can then be diagonalized and the procedure repeated to obtain the 
spectrum on successively lower energy scales, ON+Z, O N + 3 , .  . ., where ON N DA-(N- l ) / z  
is the smallest scale in H N .  In practice since the number of many-body states in H N  
grows as 4N it is not possible to retain all states after about N = 7 (even after symmetry 
has been used to reduce the size of the mahices). For N > 7 only the lowest 1000 



Transport coeficients ofthe Anderson model 25.77 

or so states of HN are retained. The truncation of the spectrum in HN restricts the 
reliable range of excitations OJ to ON < o < KWN where K is a constant dependent 
on A (K rr 10 for A = 3). The lower excitations are calculated more reliably in 
successive iterations, whilst information on the higher excitations is contained in previous 
iterations. The eigenvalues are used to calculate the partition function Z N ( ~ N  = I / ~ B T N )  
and free energy F(TN) = - k ~  h(ZN(TN)) for the to" system at a decreasing sequence of 
temperatures TN = o N / k s  - D~L-"-') '~,  N = 0.1, . . .. The thermodynamic properties 
are then extracted by first subtracting out the conduction electron contribution to the free 
energy, F,(TN) [1,2]. The specific heat is then given by the second derivative of the 
impurity free energy, 4,(T) = F ( T )  - F,(T) 

azFi, 
C ( T )  = - T -  

aTz ' 
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