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Abstract. The transport coefficients of the Anderson model are calculated by extending Wilson's
numerical renormalization group methed to finite-temperature Green functions. Accurate resulis
for the frequency and temperature dependence of the single-particle spectral densities and
transport fime r{w, 7) arc obtained and used to extract the temperature dependence of the
transport coefficients in the strong-comelation limit of the Anderson model. Results are obtained
for values of the local level position ranging from the Kondo regime to the mixed valency and
empty orbital regimes. The low-temperature anomalies in the resistivity, o(T), thermopower,
8(T), thermal conductivity, «(T), and Hall coefficient, #y(T), are discussed in terms of the
behaviour of the spectral densities. At low temperature all quantities exhibit the expected
Fermi liquid behaviour, p(T) = pgt1 — c(T/Tx)2), SCT) ~ vT, &(T)/a T = 1 + B(T/ Ti)%,
Ru(TY = —Roo(1~ 8(T/Tx)?). Analytic results based on Fermi liquid theory are derived here
for the first time for # and the numerical results are shown to be consistent with this coefficient.
The range of temnperatures over which universal behaviour extends is also discussed. Scattering
of conduction electrons in higher-angular-mmomentum, { > 0, channels is also considered and an
expression is derived for the corresponding transpost time and used to discuss the influence of the
interference ters between the resonant [ = 0 and non-resonant [ = ] channels on the transport
properties. The presence of non-resonant scattering is shown to be particularly important for the
thermopower at half filling, where the sign of the thermopower can depend sensitively on the
non-resonant phase shift. Finally the relation of the results to experiment is discussed.

1. Introduction

In this paper we present accurate results for the transport coefficients of the Anderson model
obtained by extending the numerical renormalization group method [1, 2] to the calculation
of finite-temperature Green functions. The Anderson model has been used extensively to
interpret the properties of dilute magnetic alloys and a number of the local properties of
heavy-fermion compounds. It is also of use in discussing the properties of concentrated
Kondo systems in cases where alloying or disorder inhibit the coherence effects between
the magnetic ions. Although many of the properties of this model are now well understood
{31, the temperature dependence of the transport coefficients has proved to be particularly
difficult to calculate reliably. The transport coefficients require accurate expressions for both
the temperature and frequency dependence of the impurity Green function, a quantity that is
difficult to calculate in the strong-correlation limit of the Anderson model. Here we calculate
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this quantity from Wilson’s numerical renormalization group method [1], which is non-
perturbative and is therefore accurate for arbitrarily large Coulomb interactions. This method
has played a crucial role in forming our current understanding of the Anderson model, It was
first applied to the Kondo model by Wilson [1] and subsequently to the Anderson model by
Krishnamurthy et al [2]. The two models are related via the Schrieffer~Wolff transformation
{4], with the Kondo model describing the low-energy physics of the Anderson model in
the strong correlation Kondo regime. The application of the numerical renormalization
group to these models yielded the elementary excitations, thermodynamics, fixed points
and effective Hamiltonians around the fixed points {1,2]. Dynamic and transport properties
were not calculated. The calculations showed that the Kondo model has two fixed points,
which characterize its physical properties: the local moment fixed point which describes
the high-temperature regime and in which the conduction electrons couple weakly to the
impurity moment, and a strong-coupling fixed point, which describes the low temperature
regime, in which the impurity moment is quenched and the excitations are those of a local
Fermi liquid. The parameter space of the Anderson model is larger, and the calculations
showed that in addition to the local moment and strong-coupling fixed points there are
two additional fixed points. The most important of these is the valence fluctuation fixed
point, which is characteristic of the asymmetric model. In the valence fluctuation regime,
charge fluctuations become important and the properties correspond to a model with a
strongly renormalized temperature dependent resonant level [2]. In this paper we describe
the transport coefficients and their relation to the corresponding spectral densities in these
different regimes, pointing out the characteristic features that arise in each case.

In confrast to thermodynamic properties, which have been obtained exactly by the
Bethe Ansatz [5, 6] and nemerical renormalization group [1, 2], the calculation of transport
and dynamic properties have relied on approximate methods. Finite-order perturbation in
U calculations give accurate results in the Fermi liquid regime for spectral densities and
thermodynamic properties up to U/mrA = 2.5, where U is the local Coulomb repulsion
and A is the resonant level width in the Anderson model [7,8]. However, in the local
moment regime U 3> A for T 3> Tk, where properties depend on logarithmic terms, this
approach breaks down. Quantum Monte Carlo approaches [10, 11] become increasingly less
accurate for larger values of U/ and lower temperatures. So far transport coefficients via this
method have been calculated only for the symmetric Anderson model and for U/mA €3
[12]. Transport coefficients have also been obtained for larger degeneracies of the local
level N via the non-crossing approximation [13,14). A problem with this method is that
it fails to satisfy the Fermi liquid relations at zero temperature [15]. In 2 finite magnetic
field the transport coefficients for the Kondo model were discussed in [16] on the basis of
the Nagaoka integral equations. Recently a comprehensive and highly accurate approach
to the calculation of dynamic properties of magnetic impurity models has been developed
by extending the numerical renormalization group approach [17-23]. This overcomes the
above mentioned difficulties with the approximate methods. Accurate results in all regimes
have been obtained for single-particle spectral densities at both zero [18-22] and finite
temperature [23,24]. These satisfy all the sum rules and Fermi liquid relations. In the
next section we introduce the Anderson model, inclading terms that model the scattering
of conduction electrons in higher ({ > 0) angular momentum channels. The transport
coefficients are defined in terms of the transport time for conduction electrons scattering in
both the resonant and non-resonant channels (the transport time incorporating non-resonant
scattering of conduction electrons is derived in appendix A). The numerical renormalization
group and its use in extracting finite-temperature Green functions and spectral densities is
then described. We also give analytic calculations for the low-temperature behaviour of
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the transport coefficients, based on Fermi liquid theory. These are used as a check on
the accuracy of the numerical results. Finally we present the conclusions and indicate the
relevance of the results to experiment.

2. Model, transport properties and method

2.1. The model

The Anderson model, including non-resonant scattering of conduction electrons in [ > 0
channels, is given by the following Hamiltonian:

H= Hrimp + thb + H, (1

+
Higp = Z E()C(T)UCQU + Ungyngy + Z Z Elcfmclm
o

>0 m=-t

+
Hyyy = Z(Vokc‘z,cofr 4+ HC) + Z Z (VimkCly Ctm + HC)
ko

ka I>0m=—!

H. = Z E;,L‘Io.cka .
ko

The first term Hi, represents the impurity and is coupled to the conduction electrons H,
via the hybridization term Hiyp. The scatiering of conduction electrons in 7 > O channels
is modelled by including uncorrelated levels, ¢, hybridizing with the conduction electrons.
This is equivalent to taking into account phase shifts # with / > O for the conduction
electrons in addition to the usual ! = O resonant phase shift. The charge neutrality condition
requires that these phase shifts satisfy the Friedel sum rule [9]

z=3Y 22+12 2
i=l

where Z is the excess charge on the impurity.
The many-body effects arise from the strong Coulomb repulsion between the electrons
in the impurity I = 0 level.

2.2. Transport coefficients

Assuming that the conduction electrons scatter incoherently from a small concentration,
n; < 1, of magnetic impurities, linear response theory allows the transport coefficients to
be expressed in terms of the transport integrals [28]

+oo 8
Ly = f_ . (——?ﬂ?)r‘(w)(w— 1) do 3)

where g is the chemical potential and t{w, T) is the wansport time. The resistivity, o(T),
thermoelectric power, S(T), thermal conductivity, «(7T), and Hall coefficient, Ru(T), are
given in terms of these by

1 1 af
PN =— =5 [ w@.D) (-a) do @

82 Lm
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L Ly L ¥ _¥
S(T) = —WL—O-; =l fa)r(co, T)( Bw) dw/fr(w, T)( aw) dw (%)

1 L?
«(T) = T {Lzl Lot (6)

Ru(T) = —Roo5- M

where R;o‘ = n;lelc. In the absence of non-resonant scattering, the transport time, 1o, (see
appendix A for constant factors such as #;) is given by

e Apo(w, T) t);

where A is the resonant level width and go is the single-particle spectral density. The
latter is given in terms of the resonant level Green function Golw, T) = {{cos; C(T,,,}} and
self-energy L(w, T) = TR +iZ! by

ol
20(@, T) =~ Im Gof@, T) = (-2 @) ©

T (@~ € ~ SR@) + (A — TH)?)’

The transport time in the presence of non-resonant scattering is derived from the Kubo
formula for the conductivity in appendix A. In contrast to the case of resonant scattering only
(see e.g. [13]), the vertex corrections for the current—current correlation functions entering
the expressions for the transport coefficients are finite when non-resonant scattering is
included. The resulting expression for the transport time after inclusion of vertex corrections
is

1
W@ T) o T)

Re Golw, T)
Im Golw, T)

[cos 2m ~- sin Zm:l + pa. (10)

The effects of non-resonant scattering are primarily contained in the factor [cos2p, —
[Re Golw, T)/Im Golw, T)]sin 21y, which is due to interference between the / = 0 and
I = [ channels. The non-resonant, I # 0, phase-shifts in (10) are, like #g, in general epergy
dependent, but for the case of weak non-resonant scattering of interest here we take these
to be constants defined by the screening charge in respective channels. Thus,

4r . .
fn = . [sz m+ ZI sin’(yy — m—l)] . (11)

I>1

In the T = O limit (but with ! 5 0) the transport coefficients calculated with (5)-(i1)
reduce to standard phase shift expressions, while in the limit 29 — O we recover the
usual many-body expression for the single-channel transport time (8).

From the expressions for T(w, T) and (e, T} we see that in order to evaluate the
transport coefficients we require an accurate expression for the frequency and temperature
dependent resonant Green function Go(w,T). We obtain this from the numerical
renormalization group method as described below.
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2.3. The numerical renormalization group method

The numerical renormalization group for the Kondo and Anderson impurity models is
described in [1] and [2], where it was used to obtain the thermodynamic properties. Here we
give a description of the method and its use in calculating finite-temperature Green functions
and specifically the local Green function Go(w, T) required for the transport time. The
central idea in the numerical renormalization group is the importance of including all energy
or length scales. The Hamiltonian (1) contains conduction electron states of all energies
from the band edge D down to zero energy and states from each energy scale contribute to
the impurity properties. To take into account these states Wilson introduced a logarithmic
discretization of the conduction band about the Fermi level so that all energy scales were
represented, with the greatest resolution at low energies where the many-body effects are
most important. As shown in appendix B this logarithmic discretization approximation
results in the following discrete Anderson model for the resonant channel,

H = lim 3(1+ A™HA~W=D72p,
N’—M}O2
(12}

N-1
HN = A(N_D/z[HO + thb + E A_"ﬂ‘fn(erlcrfna + fnTa-fn-i-la)]
n=0

where Hy = eoc:gaco,, + Ungynoy is the resonant part of the impurity, Hyyp = Vp( jgaq}a +

HC) couples the impurity to a local conduction electron orbital fo‘;IO), and the last
term describes the remaining conduction electron orbitals whose, wavefunctions have a
large overlap with the impurity. The conduction electron orbitals neglected in the above
discrete approximation to the full Anderson model have their wavefunctions localized away
from the impurity sit¢ and have negligible contributions to the impurity properties (see
appendix B and [2] for further details). The parameter A > 1 describes the discretization
of the conduction band. The above discretized Hamiltonian is in the form of a semi-
infinite linear chain and can be iteratively diagonalized for increasing chain lengths N to
obtain the eigenvalues, Ej," , and eigenvectors, |p)y, on successively lower energy scales
wy =~ DA~V-Y2 where wy is the lowest scale of Hy (see appendix B for details). From
the eigenvalues, the thermodynamic properties are obtained at a corresponding sequence of
temperatures Ty ~ wy /ky. The details are given in [2] and in appendix B. Here we show
how the local Green functions can be extracted on successively lower energy scales.

Consider the Green function Gglew, T) = {{co; b b, Using Hy, the Nth-shell Green
function G} (w, T) and associated spectral density p¥ (w, T) are given by

N
1 EMN.IZ(C-’QE.:'V + c_ﬁEp' }
GOO’ (w’ J ) ((CUO’; ng)) z £

= (13)
Zn(B) o w— EQ,' +EN

1 -
@1 = 5 YoMy (75 + e 3w - BB (14)
f2:4

Here Zy(8) is the partition function for the Nth cluster, and M;Vp, = {plcos 1P’} are the
many-body matrix elements of the local operator c. The latter can be evaluated recursively
in a similar way to the evaluation of the matrix elements {p|fys|q) in (B14). Using the
unitary transformation (B13) we obtain

MY, = (pleos|Pdn =Y 3 Uk(p. ridUn (g, r'i)ilirices )i

ni P

=33 Uip. rdUn(q, r'i )0 M. (15)

ni
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Hence the matrix elements M;"p, can be evaluated recursively from a knowledge of the

eigenstates of the N'th cluster, Uy {(p, ri}, and the matrix elements, Mﬁ?l, of the previous
cluster. For a given cluster size N the Hamiltonian Hy only describes excitations in a
limited range of width X'wy above the lowest scale wy present in Hy, due to the truncation
of the spectrum as described in appendix B. At T = 0 the spectral density is evaluated at
@ = 2wy. Calculating the spectral density at energies much smaller than this using Hy
is not justified, since information on lower energies is obtained in subsequent iterations,
whereas calculating the spectral densities at much higher energies than this might introduce
errors due to the truncation of the spectrum on the high-energy side. In evaluating (14)
the delta functions are broadened with Gaussians of width &y and of order wy appropriate
to the cluster size. The broadening parameter oy used within each energy shell is varied
continuously so that there is no discontinuity in going between successive iterations. The
small remaining asymmetry in the spectral features due to the larger broadening parameter
at the higher excitations should vanish in the limit A — 1. The procedure for calculating
finite temperature Green functions is slightly more complicated. The shell Green function
G{," (w, T) and spectral density p{}" {w, T) are only reliable for excitations w ~ 2wy and for
temperatures kg T < 2wy . For temperatures kg T > 2wy excited states not contained in Hy
would be important, whilst for temperatures kg T of order 2wy transitions between excited
states would need to be known accurately. In principie these are known from subsequent
iterations, but are not contained with sufficient accuracy in Hy. The only transitions known
with sufficient accuracy in Hy are the ground state to excited state transitions with excitation
energies =~ 2wy, which is the natural energy scale of this clustert. Aslongas kpT & 2wy it
is not necessary to know the lower excitations, since their contribution to the Green function
and spectral density for the energies w = 2wy under consideration will be negligible (note
the delta function in (14)). From this discussion it follows that the spectral density for
temperature T can be calculated from the shell spectral densities p{,(w, T) at frequencies
w =~ 2w fori = 1,2,..., M ontil 2wy becomes of order T. To calculate the spectral
density at temperature T and for frequencies below 2wy, a smaller cluster is used. This
is done because when T is larger than the frequency at which the spectral density is being
evaluated, it is the excited states of order T contained in previous clusters that are important
and not the excitations very much below T. The procedure outlined here requires storing
all the matrix elements for the Green functions for each cluster size, since smaller clusters
may be required in subsequent iterations.

In the absence of non-resonant scattering we can calculate the transport time to(w, T)
directly from the single-particle spectral density pg(w, T) using (8) and hence the transport
coefficients (4)—(7). In the presence of non-resonant scattering, we evaluate in addition the
real part of Go(w, T') and use (10) and (4)(7) to calculate the transport coefficients. In the
next section we present the numerical results obtained using this procedure.

2.4. Low-temperature resulls

Before presenting numerical results we outline some analytic results on the low temperature
behaviour of the transport coefficients obtained by using Fermi liquid theory. These serve
as an independent check on the accuracy of the numerical renormalization group method.
In the following analytic calculations we restrict ourselves to the case of resonant scattering
only so the transport time t{w, T) = (w, T).

To extract the low temperature behaviour of the transport coefficients we use the
Sommerfeld expansion. In the transport integrals (3) the factor (—df/dw) for temperature

t The term cluster is suggested by the notation although the calculations are in k-space.
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T provides an energy cut-off outside the Fermi window jw| < T. The functional form of
Go{ew, T) also has an energy scale |w| « kgTy over which t(w, T) is a a slowly varying
function. where Ty = T for the Kondo regime and kg T = A, for the mixed valency regime.
As a consequence, for temperatures T <« Tp, we can apply the Sommerfeld expansion

+Q0 2 2
f ( 7 )h(w,ndm=h(eF.T>+-’f-5~(kB:r)2(M) ]

o \ @ dw?
It 4 (*h(@,T) 5
+ 5 O T) (“’é}o**_)mp + O(T%). (16)

The quantity h{w, T) entering the above expression is T’ (e, T)ew™ for the integral L. For
the Kondo problem the transport time 7(w, T) is a strong function of temperature at the
Fermi level, so in the Sommerfeld expansion in addition to the temperature dependence
originating from the Fermi function there is also the explicit temperature dependence of the
transport time at the Fermi level. This is taken into account by expanding r(er, T) in a
Taylor series

3%t(er, T)

1
T) = iy
t{ep, T) T(€F10)+2T( T2

) + O(T%. (17)
=0

In the Sommezfeld expansions for the resistivity, thermopower, thermal conductivity
and Hall coefficient the derivatives that enter are (1/7)3t/8w, (1/t)d%t/dw? and
(177)8%7/8T2. Since wlw, T) = 1/Apo(w, T) these derivatives are given by

ot _ % 1
T d po Do (18)
192 13p0\> (1 82
__52=2(_ﬂ (L% (19)
T dw po dw po dw?
18% 1 8200
ToT (‘;rﬁ) @0)
Using (9) we obtain for the energy derivatives at w = ¢p and T = 0,
1 /3
= (ﬁ) = 3y cot(ng/2) @1)
1 3%p 1/3%%! 2m00(ee, 0)\>
(gm) = "z(m) + (—‘“;—) cot{no/2)
1 1 /3833  cot(wng/2) [ 9*=R
27 Apoler, O —=— + — -
+ 2 Aot O -5+ A( awz) o (o )) @)

where A = zA and z = 1/(1 — dER/8w) =, is the wavefunction renormalization constant.
In deriving the above we have used (9) and the Fermi liquid properties of the self-energy
TR(w, 0) ~ @ and EYw, 0) ~ (w — €p)*. The quantity ng is the local level occupancy and
y is the linear coefficient of the low-temperature specific heat. The latter is given by [3]

A

o = 23
&+ A 2

2
V=§”kza
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where & = z(ep + ZR(er, 0)). In the Kondo regime z <« 1 and A ~ kgTx < A, which

leads to a large enhancement of y since from (23) y ~ 1/Tx. The Kondo temperature, Ty,
is given by [29]

AN
kpTg =U (ﬁ) eTeoleotU) 28U o4)

For the thermopower we require only the first energy derivative of py to extract the
leading term. We have from (5) and (16)

S(T) = — 1 (72/6) (kp T)2 (8% (07 () ]/ 80 pee, + O(T*) 25)
T |elT z(er)l 4 (w2/6) (ke T)[1/7(er)][8%7 (@)/ 80wz ] + O(T4)
which on using (18) and (21) reduces to the Fermi liquid result, [33, 35]
S(T) = El’f cot(nno/2) + O(T?) (26)

and can be checked by evaluating S, y and ry within the numerical renormalization group
technique [24].

To extract the other transport coefficients to lowest order in T requires the second
derivative with respect to temperature of 7p and hence an expression for the self-energy
correct to order T2. This is difficult to obtain analyticatly in the general case so we restrict
ourselves to just the symmetric case. The self-energy for the symmetric model correct to
order w? and T2 is given by [31,32]

2

) R
(o, T)=TMw, T+ isXw, T) = 2¥w,0) — lm(& + m ks TY) @7

where I'y is the frreducible vertex function evaluated at zero frequency [31, 32]. Using (27)
we obtain the temperature derivative

19 --(% 20\ _ K313 1 %)
TdT2) 1m0 \m T2 mA ((eo+ ZR)? + A2

We now use these tesults to first check the exact result for the T2 coefficient of the
resistivity first derived by Noziéres [30] and Yamada [31,32] and then derive the exact
coefficient for the T2 coefficient of («(T)/ T}/« (T)/ T)1-0. Restricting the discussion to
the Kondo regime where the charge susceptibility is zero so g = w A /z, and the particle-
hole symmetric model where ¢o + £% = 0, we find from (22) and (28)

1821') <2 (1321') 2,2 ;%2
18% =3/A T = 22 /A2, (29)
(T sz we=ep, T=0 T 3T2 w=¢g, T=0 B

Hence from (4), (16), (17) and (29) we have for the resistivity

p(T) = teP(er, O)[1 + 3T2[1/(er, O)1(3%T/8T?)
+ [m2 (ks T)2/6)[1/x (e5, B)J*r/080” + O(TH]}™
= fe’t(ep, O[1 + (k3 /AHT? + Lw kg /ANTE + 0(TH)
= pO){(1 — e(T/Tx)®) (30)
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where p(0) = 1/e%t(ep, 0) and ¢ = n%ET2/A? = n*/16 = 6.088, and we have used the
result for the symmetric case wA = dkpTx [31,32]. The above result for ¢ is the exact
result obtained by Nozieres [30]. Without the contribution from (28) the coefficient ¢ wonld
have been wrong by a factor of two. Away from the symmetric case the result of Noziéres
will be modified due to terms in (18) and (19) that depend on the occupation aumber ny,
and also due to additional temperature dependences originating from the occupation number
and the imaginary part of the self-energy. These are difficult to estimate analytically, but
our numerical results to be presented in the next section give some indication of their size.
Most terms depend on cot(wng/2) and are expected to be smali in the Kondo regime ng =~ 1.

We now prove an exact Fermi liquid result for the thermal conductivity. Using
e|lS(T)/T = my cot(mny /2) we have

T 1
K(T ) = FL;. + wy cot(rna/2) L. (G

The expansion for Ls; is

+00 2 24,2 4
Ly = f (_%) a)2r(w‘ T)dw = %(kBT)Z (M) + 710581‘)4

0 de? 720
as 2
N (3 {w t{w))

d?

n 3 T? 3 1 (3%
= L0 |1 s —
3 T )[ Y r(aﬁ)m]

Tt 4 f 3% P
+ —'é'(')—(kBT) (—a-{?)m=EF + O(T")

) + O(T%)

222

7 UET 1,1 (3%
= N1 +=T=| —
3 e )[ 2 T(3T2)1—0

TedT? 1 (9%
20 =

W) + O(T“)}. (32)

Substituting this into the expression for the thermal conductivity, and using the above results
for the derivatives, we obtain for the symmetric case in the Kondo limit

K(T) [ (@Y _ T\ -
T/ (—r')o =1+5 (T—) ©3)

where f = 317%/320 = 9.44 and the linear coefficient of x is & = (k(T)/T) =
7 Ykkv(er, 0)/3. In the asymmetric case there will be additional contributions to the thermal
conductivity, which will modify the coefficient 8. As discussed earlier for the resistivity
these will be difficult to estimate but are expected to be small in the Kondo regime, so we
expect the coefficient 8 to remain close to its symmetric value 3154/320.

The low temperature behaviour of the Hall coefficient can also be exiracted. From the
Sommerfeld expansion it can be shown that the order T2 terms from the energy derivatives
cancel and that the T2 term results from the temperature dependence of t at the Fermi
level, yielding in the symmetric case Ry(T) ~ —Roo(1 — 8(T/ Tk)?), where the coefficient
8 depends on second derivatives and a fourth derivative (34r/aw28T2)w=€F,r=o. We do not
evaluate this since as discussed in section 3, there is also a large contribution to the Hali
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effect due to skew scattering of electrons, which should be included for a discussion of the
Hall coefficient of magnetic impurities [39, 40].

To summarize the analytic calculations, we see that in Fermi liquid theory in the Kondo
regime that the transport coefficients all scale with Ty at low temperature. Specifically we
have

(T = pO)(1 — ¢ (T/Te)?) (34)
S(T) = ”—IZI—T cot(no(er)) ~ (T/T) @35)
T)/T)/ €T/ T =1+ BT/ Te)? 36)
Ru(T)/Roo = —(1 = 3(T/Tx)?) (37)

where the constants ¢, &, 8, ¥ and § depend on t and its derivatives at the Fermi level. For
the symmetric model one finds

= -71% = 6.088 (38)

== "B”zr( . 0) 39

B =31 /320)3'1’ = 9.4—4 (40)
Jr2

V= keTe @

The comesponding expression for arbitrary U/ can be derived from a renormalized
perturbation theory in terms of A and a renormalized interaction U = z2T [37].

In the asymmetric case for the Kondo regime ng =~ 1, there should be negligible
corrections to these coefficients, the asymmetry in this regime should only affect the value
of Tk.

The functional form of the low temperature transport coefficients in the Kondo regime
(343437} and the coefficients of the leading-order terms (38)(41) in the symmetric case
provide a check on the accuracy of the numerical renormalization group results presented
in the next section.

3. Numerical results

The numerical results presented here are for the strong correlation limit of the Anderson
model, ie. U/mA > 1. We take U/mA = 4, unless otherwise indicated. The local
level position takes values /A = —U/2A = —2m comesponding to the symmetric case
and g5/A = —4, =3, =2, ~1, 0, 41 corresponding to the asymmetric case, We are mainly
interested in universal effects independent of the band structure, so all parameters are small
relative to the conduction electron half bandwidth D = 1. Specifically we used A = 0.01D,
For €p/A = —4, —3, —2 the parameters describe the Kondo regime, whilst for /A = —1,0
and ¢3/A = +1 they describe mixed valency and empty orbital regimes respectively. In
discussing the effects of non-resonant scattering on the transport properties we took a small
= 1 phase shift, 7y = £0.01x, +0.02x, ..., £0.05x. The discretization parameter A can
be taken as low as 1.5 without encountering large errors due to the truncation of high energy
states. The use of such a small value of A does introduce errors into the spectral densities for
extremely low energies. These are noticeable in the symmetric case for example, where for
sufficiently low energies o < kg Ty, the symmetry of the spectral density is violated slightly.
A larger value of A allowing the lower energies to be reached in fewer iterations could be
used to avoid this problemn, however this was not necessary in the present calculations.
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3.1. Thermodynamics

The thermodynamic properties of the Anderson model have been discussed in [2], where
the static susceptibility was calculated over the whole temperature range from the band edge
down to temperatures T « Tx. The specific heat was calculated in the strong coupling
regime T & Ty by perturbation theory on the effective Hamiltonian around the strong-
coupling fixed point [2]. Here we briefly present the results for the local level occupancy
no(T) and specific heat C(T) over the whole temperature regime of interest (calculations
of C(T) for the screened Anderson model were presented in [21]).

3.1.1. Local level occupancy, no(T). The local level occupancy no(T) can be calculated
at a sequence of temperatures Ty, N = 1,2, ... from the average electron number on the
impurity and is shown in figure I for several values of the local level position ranging
from the Kondo regime (ep/A = —4, —3, —2) to the mixed valency (e3/A = —1,0) and
empty orbital regime (¢y/A = +1). The only significant temperature variation occurs on
the valence fluctuation temperature scale kg7 = A = 10~2D. On the Kondo temperature
scale, Ty (listed in table 1}, the variation of sy is insignificant, indicating that the Kondo
resonance has negligible weight in agreement with the spectral densities presented below.
The values of ng(T = 0) are shown in table 1. The valence ng(T) approaches the correct
valoe (no = 1) at high temperatures.

1.0 T ; T r
08 J
06 | J
— @
S ey
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' 60 G- Be A=0
ceo0eee? & 0 gA=-1
b -Befb=2
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G g A4
0_0 1 ] I- I-
10™ 10° 10°* 10 10°
k,T/D

Figure 1. The local level occupancy np{T") over the whole temiperature range in various regimes.
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Table 1. The first colurnn shows the local level positions used in the calculations, and the other
columns show various data extracted. pf7*%! = sin?(wno/2)/x A, where ng is the local level
occupancy at T = 0 and is extracted from the partition function (7% is the Haldane expression
for the Kondo temperature given in the text), The (T/Tk)? coefficient of the resistivity in the
Kondo regime is defined by ¢ = imr_,q([1 — p{T}/p(0)1/(T/ Tk)*). which according to Fermi
liquid theory should be 6.088 in the symmetric case with small corrections in the asymmetric
Kondo regime. The linear coefficient of the thermal conductivity is & = (x(T)/T)rp and g
is the (T/Tg)? coefficient of x(T)/aT, which should according to Fermi liquid theory be 9.44
in the symmetric case.

Y na y/B Tk/A plricdel - pMRGiee 0) Bemor ¢ %emor o g
Cep==-U/2 100 80555 D.0180 31.83 3261 —-2.4% 57 —64% 0.102 116
g =—4A 0.93 42240 0.0346 3145 3213 =-2.1% 58 —4.7% 0.101 13.5
g =-3A 088 20690 0.0690 31.26 31.33 -0.2% 64 +5.1% 0.106 126
eg=-=-2A 078 832.0 0.1790 2834 2893 =-2.0% 6.6 +8.4% 0.113 3.2
g==-4 0.63 231.0 05900 2214 2232 -0.8% —_ - 0147 —
=0 0.45 100.7 25100 13.18 13.36 -1.4% —_ — 0246
€ =+A 0.31 422 13.660 6.85 6.79 + 0.9% —— — 04%% —

3.1.2. Specific heat. The specific heat, shown in figure 2, exhibits one or two distinct peaks
depending on the position of the local level. In the Kondo regime there are two distinct
peaks, one at T = Ty and another at T of the order of A. The low-energy peak, which is
observed in many systems, is associated with the entropy of the magnetic impurity, so the
area under this peak is given by kg In(2) for the present case where the impurity has § = %
The higher peak is associated with the charge degrees of freedom. The same behaviour
is found in the Bethe ansarz solution [34]. In figure 3 we show the ratio C(T)/T. The
behaviour linear in T, characteristic of a Fermi liquid, is clear and we tabulate the linear
coefficient in table 1. Finally, figure 4 shows that the specific heat is a universal function
of T/Tx in the Kondo regime. Universality for this quantity extends up to T ~ 5Tk for
the case €9/A = —4. From the figure it seems very likely that in the Kondo regime and
provided the local level is very far from the Fermi level the universal behaviour should
extend over the whole range 10Tk of the low-energy peak.

In the mixed valency regime there is a peak slightly below the valency fluctuation
temperature scale kg7 = A and a shoulder or small peak at higher temperatures. The same
behaviour is found in the empty orbital case. The same behaviour is found also from the
Bethe ansatz solution [34].

The value of the linear coefficient of specific heat has been checked in the case of
U7 = 0 and found to be in good agreement with the exact result. It has also been checked
independently for both U = 0 and finite U [38] using the Fermi liquid relation

Axs
(gup)?

where y. and y. are the spin and charge susceptibilities and can be obtained as
thermodynamic quantities or from the corresponding dynamic susceptibilities. This Fermi
liquid relation has been shown to be satisfied within a few per cent and provides an
independent test of the accuracy of y from the present thermodynamic calculation [38].

+ Xe (42)

= em2?

3.2, Spectral densities

The spectral densities in the Kondo regime are shown in figures 5-7 for zero and finite
temperatures. At low temperatures T & T the spectral density is characterized by three



Transport coefficients of the Anderson model 2531

0.80 T T T T T

0.60

——

E !
S 040

0.20 +

Figure 2, The specific heat in vnits of kg over the whole ternperature range in the Kondo,
mixed valency and empty orbital regimes.

resonances: the Kondo resonance at the Fermi level of width Ty and negligible weight,
and two atomic like resonances on either side close to the bare excitation energies &5 and
gy + U. The latter contain most of the spectral weight and have widths of order A. The
Kondo resonance lies at the Fermi level in the symmetric case ¢¢ = —U//2 and above
the Fermi level in the asymmetric case ¢g > —U/2 (see inset to figure 5). The width
of the Kondo resonance is approximately Ty, where Tk is defined in (24) and shows the
correct exponential dependence on ¢ and I/ (ipset to figure 5 and [23]). On increasing
the temperature, the Kondo resonance decreases rapidly in height and eventually disappears
completely for T > Tx (figures 6 and 7). The atomic like peaks remain temperature
independent until kg7 =~ A. For kg7 2 A they acquire some temperature dependence, and
in the asymmetric case, figure 7, there is a transfer of spectral weight from the lower to
the upper peak with increasing temperature. In the symmetric case, figure 6, no spectral
weight can be transferred but instead the two peaks broaden with increasing temperature.
The positions of these high-energy peaks change little with temperature. Qualitatively
similar results for the temperature dependence of the spectral densities have been obtained
by perturbative methods for U/m A £ 2.5 [7]. The spectral densities in the mixed valency
and empty orbital regimes are shown in figures 8-10 for zero and finite temperatures,
In these regimes the spectral density at low temperatures, kg7 < A, is characterized
by two resonances (see figures 8-10): one at & of width approximately A and a much
broader resonance at €y + U/ carrying very much less weight. In the mixed valency regime,
€g/A >~ —1, the bare level is renormalized by the interactions to lie above the Fermi level
€ > 0. The bare level is also renormalized to higher energies in the empty orbital case,
i.e. € > € 2 A. On increasing temperature, the main effect in the mixed valence case is a
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Figure 3. The specific heat exhibits Fermi liquid behaviour, C(T) = y'T, at low temperature,
T « Tk, o all parameter regimes. Note the very much enhanced values of y in the Kondo
cases compared to the mixed valency and empty orbital cases.

strong temperature dependence of the resonance at € on a scale of order A (see figures 9
and 10). This resonance broadens and decreases in height with increasing temperature, but
does not completely disappear at high temperature. In addition it always remains above
the Fermi level. The resonance at & -- U remains distinct from that at € up to at least
kpT == 6A. Similar behaviour occurs in the empty orbital regime but the relevant energy
scale for the temperature dependence in this case is set by &.

A pood test of the accuracy of the spectral densities is provided by the Friedel sum
rule which relates the spectral density at the Fermi level to the T = 0 occupation number
no{T = 0):

1
polw = e, T =0) =~ sin®(rrg/2). (43)

Using no(T = 0) calculated from the partition function gives agreement to within 3% in
all parameter regimes as shown in table 1. The values of ny(¥ = 0) calculated from the
spectral densities are within 3% of those calculated from the partition function, but the
former are expected to be essentially exact since they are obtained from the low-energy
part of the spectrum (ng(T = 0) = limy, Lo0{no}r, ). where the method gives the highest
resolution. It should be noted that the value of ry calculated from the spectral density is
largely due to the high-energy features at €p, where the method has less resolution due to
the logarithmic discretization of the conduction band. However, the agreement to within
3% between the values of ng calculated by these two different methods provides additional
evidence that this method can give accurate results for high-energy spectral features as well
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Figure 4. The specific heat in the Kondo regime, showing the universal behaviour for T € Tk,
However, when the locat fevel position is well separated from the Fermi level, universatity
extends up to almost 10Tk over almost the entire range of the low energy peak. The two
distinct energy scales, Tk governing the low energy peak, and A » Ty govemning the high-
energy charge fluctuation peak, are clearly evident.

as low-energy ones. The high-energy features have a small asymmetry due the broadening
procedure used for the delta functions in the spectral density which should vanish in the
limit A — 1 (as described earlier).

3.3. Transport coefficients

3.3.1. Resistivity. Results for the resistivity are shown in figure 11 for several values of
the local level position ranging from the Kondo regime (ep/A = —U/2A, —4, -3, -2) to
the mixed valent (¢0/A = —1, 0) and empty orbital (eo/A = +1) regimes. The bebaviour
of the resistivity is qualitatively similar in all regimes with a monotonic increase with
decreasing temperature. At T = 0 it reaches its limit p(0) = 1/e’1y(¢r, 0). Since
7 ~ l/py we have from the Friedel sum rule for the spectral density that the T = 0
resistivity p(0) ~ sin®(wng/2). This is satisfied for all cases shown in figure 11 with
the same accuracy with which the Friedel sum rule was satisfied for the spectral density
(discussed earlier and summarized in table 1).

In the Kondo regime at low temperature 7 < Tx the resistivity is given by the exact
Fermi liquid result [30-32]

T 2
o(T) = p(0) { 1- "(T_K) } (44)
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Figure 5, The T = 0 spectral density in the Kondo regime for several positions of the local
level: the lower satellite peak is at the local level position €g. This takes values g = =U/2
(symmetri¢ case), €g/A = —4, 3, —2 (asymmetric cases). For egfA = -2 the lower satellite
peak forms a shoolder and has partly merged with the Kondo resonance. The high-energy
satellite peak is separated from the lower one by the Coulomb energy U/, The inset shows the
Kondo rescnance in more detail. The Kondoe resonance becomes broader as —ep decreases.

where ¢ = 7*/16 = 6,088, with corrections which increase with increasing asymmetry, as
indicated in the previous section. The rescaled resistivity in the Kondo regime is shown in
figure 12. Universal behaviour is found in the range 0 £ T < 5Tk. The inset shows the
expected T2 Fermi liquid behaviour. In the Kondo regime the values of the T2 coefficient
extracted from a least-squares fit in the region 0 € T < 0.17y are within about 8% of
the exact result ¢ = 6.088 (see table 1). The values of ¢ increase systematically with
increasing asymmetry and we believe this is in part due to the correction terms discussed
previously. However the increase in ¢ is small, less than 8% in going from the symmetric
to the ¢g = —2A case, which indicates that the correction terms discussed earlier are also
small in the Kondo regime. It should also be noted that the value of the coefficient depends
sensitively on the definition of the Kondo temperature, small ‘errors’ in this being doubled in
the coefficient ¢ due to the (T'/ Tk)? dependence. The expression for the Kondo temperature
used here (24) is that of Haldane [20] which is appropriate for large U, For smaller values of
U/ there are corrections [33] which should be taken into account in extracting the coefficient
c.

At high temperatures T >» T, the resistivity is well described by the Hamann result
[36] for the sum over parquet diagrams

_pO@ 7 In(T/Txn)
=" (1 [T T + 725G + 1)]"2)'

Figure 13 shows the resistivity for the symmetric case together with a fit of the Hamann

(45)
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Figure €. The finite-temperature spectral density for the symmetric case. The inset is for |
ple, T) plotted versus T/ Tk and shows in more detail the region around the Fermi level. The
satellite peaks acguire some temperature dependence for T =~ A,
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Figure 7. The spectral denmsities for the asymmetric case in the Kondo regime. At high

temperatures T > A there is a shift of spectral weight from the lower to the upper satellite
peak. The Kondo resonance, shown more clearly in the inset where it is plotted versus T/ Tk,
disappears for T > Tg.

result with Tyy = Tyx/1.2. The fit is very good in the range Tx < T < 107k but (45)
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Figure 8. The T = 0 spectral densities in the mixed valency (ep/A = —1,0) and empty
orbital (€p/ A = -+1) regimes, The resonant level of width of order A is renormalized by the
interactions to lie above the Fermi level. There is no Kondo resonance in these cases and the
upper satellite peak at approximately €p + & has very little weight,

fails to give the correct Fermi liquid behaviour at low temperature. It also differs to the
Anderson model resistivity at very high temperatures (T > 107%) since the Hamman result
is for the s-d model. The latter neglects charge fluctuations which have some influence on
the resistivity at higher temperatures.

The effect of non-resonant scattering on the resistivity is shown in figure 14 for the
symmetric case. The resistivity decreases slightly at low temperature for increasing absolute
values of the non-resonant phase shift |1;;|. The overall behaviour, however, for small values
of |m | is the same as for resonant scattering only. The decrease with increasing |7| is due
to the induced change in the local charge dn away from ng = 1. Since the resistivity attaing
its maximum for ny = 1, any change away from this leads to a smaller resistivity. In
the asymmetric case, the effect of non-resonant scattering is to decrease the resistivity for
increasingly negative values of #; and to increase it for increasingly positive values of n;.
This effect is also due to the induced change in the local charge due to a repulsive (n; > 0)
or attractive (m < 0) local potential.

To summarize, the resistivity is described accurately over the whole range of
temperatures from the logarithmically dominated region T » Ty through the crossover
region T ~ Ty and into the low-temperature Fermi liquid region T <« Tx.

3.3.2. Thermopower. The thermopower is shown in figures 15-17 for the case of resonant
scattering only. The effect of non-resonant scattering on the thermopower is discussed
below. In figure 15 we show the low temperature Fermi liquid behaviour of the thermopower
given by (26), S(T)/y T = (x/e)cot(mng/2), which relates the linear coefficients of the
thermopower and specific heat to the resonant level occupancy. By extracting y from the
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Figure 9. The temperature dependence of the spectral densities in the mixed valent regime.
The renormalized resonant level of width A lying at ép > 0 acquires a strong temperature

dependence on a scale of T =~ A,
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Figure 10. The temperature dependence of the spectral densities in the empty orbital regime.
The relevant scale is the renormalized level & > 0, which for the present choice of parameters is
approximately A. On a scale of €y ~ ¢; this resonance has a strong dependence on temperature,

second derivative — limy_,o 82 Fmp(T)/8T2 of the impurity free energy and ng from the



2538 T A Costi et al

40.0 S . ,

—og,=-U2

G-—OE‘,=-4A
30.0 | ]
E 200 ]
10.0 + ]

0.0 | . :
10 10" 10° 10’ 10°
T,

Figure 11. The electrical resistivity in various parameter regimes over the whole temperature
range. The curves ate plotted versus the reduced temperature T/ T, where Ty = A in the mixed
valent and empty orbital regimes and 75 = Ti in the Kondo regime. The zero-temperature
value, p(T = 0), is fixed by the Friedel sum rule to be sin®(mng(T = 0)/2)/m A.

spectral density or partition function we have shown elsewhere (241 that this Fermi liquid
relation is satisfied to a high degree of accuracy in all parameter regimesf.

From figures 16 and 17 it can be seen that the thermopower has different characteristic
behaviours in the Kondo and mixed valency regimes. The thermopower for the symmetric
case, €g = —U /2, is identically zero due to particle~hole symmetry (see later for a discussion
of the effect of the non-resonant terms in this case). For the asymmetric case in the Kondo
regime (gg/A = —4, —3, —2) it exhibits a low temperature maximum at T >~ Tk/3 and
then changes sign for T > 7k before reaching a broad minimum at high temperature
kgT ~ A (figure 16). In the mixed valency regime (¢g/A = —1,0) there is again a
maximum, at kg7 ~ A /3, but there is no sign change at higher temperature and there
is only a shallow minimum at kg7 =~ A (figure 17). The behaviour in the empty orbital
regime {€g/A = -1} is similar to that in the mixed valency regime except that the shaliow
minimum at kgT =~ €3 >~ A becomes a shoulder (figure 17).

This complicated behaviour of the thermopower has a clear interpretation in terms
of the temperature dependence of the spectral densities. We consider first the Kondo
regime. The low temperature behaviour T < Tk of the thermopower obtained from the
Sommerfeld expansion S(T) ~ y T shows that § is positive and large due to the strongly
enhanced values of y in the Kondo regime (¥ ~ 1/Tx). At temperatures I" of order 7k
for which the thermopower is determined by the Kondo resonance, we see from (5) that

1 In the inset to figure 4 of [24] the curves S(T)/ T were labelled in the reverse order to the correct one shown
here for different local level positions.
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Figure 12. The scaled resistivity in the Kondo regime showing the universal behaviour at low
temperature up to approximately 57x. The inset for 1 — (p(T)/p(0)) versus (T/ T)? shows
the expected Fermi liquid behaviour for the resistivity at low temperature T < 0.17g. The
coefficient, ¢, of the T2 term in the resistivity is found to lic within 8% of the exact result in
all cases,

the sign of the thermopower depends on the slope of the spectral density at the Fermi level
(8po{ew, T)/8w)y—c,- This slope decreases with increasing temperature as a result of the
strong temperature dependence of the Kondo resonance. The disappearance of the Kondo
resonance gives rise to increased scattering of holes relative to electrons which causes the
thermopower to change sign for T > Tx. This sign change at T =~ Ty is characteristic
of the Kondo regime. As the temperature is increased to kg7 =~ A, charge fluctuations
become increasingly more important and there is a ransfer of spectral weight from the lower
satellite peak at €y to the upper one at ¢ + U (figure 7). Holes are scattered increasingly
less than electrons as the temperature is increased and therefore the thermopower increases
for kpT > A. Hence a broad minimum arises at kpT =~ A.

The behaviour of the thermopower in the mixed valency and empty orbital regimes can
be explained in a similar way in terms of the temperature dependence of the spectral density.
In the mixed valency regime the interactions renormalize the bare local level e to lie at
€y above the Fermi level (see figure 8). The thermopower can be analysed in terms of the
resonance at € of width A in a similar way to the above analysis for the Kondo resonance.
The low-temperature maximum occurs at kg7 ~ A /3 but the low-temperature enhancement
S(T) ~ 7T is only of order ¥ ~ 1/A (neglecting the phase factor cot(mwng/2)) . There is
a maximum at kg T =~ A, beyond which the thermopower decreases. In this case however,
the resonance above the Fermi level does not disappear but is increasingly broadened with
temperature (see figure 9). Hence the thermopower does not change sign. In the empty
orbital regime, the behaviour of the thermopower can be similarly explained in terms of the



2540 T A Costi et al

40.0 . . :
S—<CNRG
30.0 b G- -9 Hamann

£ 200 |
10.0 |

0-0 l- 1 L

10° 10" 10° 10' 10°
/T,

Figure 13. The resistivity in the symmetric case with a fit of the Hamann expression with
Tkn = Tx/1.2. The Hamann result fits the high-temperature range, and is very close to the
NRG data for Tx € T < 10Tx. It fails at low temperatures and due to the neglect of charge
Auctwations in the s-d model differs from the Anderson model resistivity at very high temperature,
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Figure 14. The influence of non-resonant scattering of conduction electrons on the resistivity
in the symmetric Kondo regime.

temperature dependence of the spectral density.
We now consider the effect of non-resonant scattering of conduction electrons on the
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Figure 15. S(T}/(T/Tx) showing the Fermi liquid behaviour linear in T of the thermopower
for T' < Tx. The different curves are for local level positions £g = —4A {Q), ¢p = =3A (O),
g = —24 (Q), eg = —1A(A), ep = 0(7), €0 = +1A(+). The inset shows the first three cases
in more detail.

thermopower. The effects of non-resonant scattering are most dramatic for the symmetric
case, where in the absence of such scattering the thermopower vanishes identically. The
presence of non-resonant scattering leads to interference effects between the resonant ! =0
channe! and non-resonant / = 1 channels making the thermopower finite even for the
symmetric case (see appendix A for details of how these interference terms arise). This is
seen explicitly at low temperatures by applying the Sommerfeld expansion to (5) keeping
the full wransport time with inclusion of non-resonant terms,

zy T [ sin(2no(eF) — 2m1)
lel  Lsin®(no(er) — m) + pa

Here, no(w) is the resonant phase shift,

S(T) = ] + o(T?). (46)

Im Go{w)

tan{ng{w)] = — Re Go(@)

“7)
and m; is the phase shift of conduction electrons scattering in the / = 1 channel (g,
contains the effects of higher-angular-momentum scattering and was discussed earlier). For
no(¢p) = /2 corresponding to the symmetric case the above expression gives a finite
thermopower due to the non-resonant terms.

In figure 18 the thermopower for the symmetric case for several values of the non-
resonant phase shift 7 is shown. The thermopower can be positive or negative at low



2542 T A Costi et al

@0 gy = 44
E"E%:-SA
G—=Og,=-2A
0.5 | & -

S(T)

10

Figure 16, The thermopower S{T) in the Kondo regime. The low-energy maximum is at a
temperature T in the mnge Fx/3 < T & Tk whilst the broad minimum at higher temperature is
at T~ A,

temperature depending on whether »1 is negative or positive. This is clear since a positive
 corresponds to a repulsive potential, which decreases the charge on the impurity making
the thermopower the same as for less than half filling, i.e. positive at low temperature, and
conversely for n; negative.

The effect of non-resonant scattering of conduction electrons on the thermopower in the
asymmetric cases is shown in figure 19 and figure 20 for the Kondo and mixed valency
cases respectively. In the mixed valency case we see that a small positive non-resonant
phase shift can change the minimum at kT ~ A (figure 20) into a shoulder making the
thermopower resemble that of the empty orbital case. On the other hand a small negative
non-resonant phase shift accentuates the minimum at kg7 = A and makes the thermopower
more similar to that of the Kondo case. It is possible that a sufficiently large negative phase
shift 7 could make the thermopower in the mixed valency case change sign, but in this case,
which corresponds to strong non-resonant scattering, the frequency dependence of n, should
be taken into account (see [27]). In the Kondo regime similar trends are found on varying
the non-resonant phase shift from negative to positive values, In the weak Kondo regime,
ép/A = ~2 (figure 19), for which Tk = 0.18A, a sufficiently large value for n; > 0.042
can change the sign of the high-energy minimum at kg7 =~ A, making the thermopower
resemble that of the mixed valency case. The effects of non-resonant scattering can be
understood as for the symmetric case as arising from a change in the local screening charge
on the impurity. A difference in the thermopower of figure 18 for the symmetric case and
figure 19 for the asymmetric case is that the extremum at kT > A in the symmetric case is
very much suppressed. This is expected since this extremunm is associated with the charge
fluctuations, which in the symmetric case are strongly suppressed and are only included
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Figure 17. The thermopower S(T) in the mixed valency and empty orbital regimes. The low-
energy maximum in the mixed valency case is in the range A/3 < T £ A and the minimum at
higher temperature is at T ~ A, In the empty orbital case, there is only a shoalder at T =~ A.

in the present case as a result of the non-resonant scattering terms. We see then that the
thermopower is sensitive to small changes in the local environment of the magnetic ion,
which has been modelled here by including non-resonant scattering of conduction electrons.
The sensitivity arises because of interference between the ! = 1 channel and the resonant
I = 0 channel, in contrast to the [ > 1 channels, which have negligible influence since they
do not couple to the resonant channel.

3.3.3. Thermal conductivity and Lorenz number., The thermal conductivity is shown in
figure 21. Tt shows the expected Fermi liquid behaviour k(T)/aT ~ 1 + g(T/Tx)* at
low temperature (T < Ti) with linear coefficient & ~ t(eg) ~ 1/sin*(mno/2) as shown
in figure 22 and in accordance with the Friedel sum rule. The 72 coefficient B, i.e. the
T3 coefficient of (T, has also been extracted from the numerical results by using a least
squares fit in the region 0 < T/Tg < 0.01. The T? behaviour is shown in figure 23 and
the results extracted for B are listed in table 1. ¥t les within 20-40 % of the exact result
B = 9.44 calculated above using Fermi liquid theory. The agreement is reasonable since we
are dealing with 7% corrections to «(T) and the extraction of 8 also relies on an accurate
extraction of the linear coefficient «v. The resistivity coefficient arose from a T2 term and
could consequently be determined more accurately. In addition, corrections to the Haldane
expression for the Kondo temperature discussed for the resistivity are also expected to be
more important for the coefficient 8 since any ‘error’ in Tx will me enhanced in 8 due to
the (T/Tx)® dependence. A distinct low-temperature anomaly is absent from « (T'), and its
behaviour is similar in both the Kondo and mixed valency regimes. Universality in «(T)/T
extends up to at least 107k in the Kondo regime. The Lorenz number ratio L/Ly where
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Figure 18. The thermopower S(T) in the symmetric case with the inclusion of non-resonant
scattering. The low-energy minimum is at T = Tk and the extremum at higher temperature is
at T =~ 50Tk = 0.9A.

L = xp/T and Lo = w2kp /3¢ is shown in figure 24. Deviations from the Wiedemann—
Franz law are found for T 2 0.17%. In the Kondo regime, L(T), like «(T), is universal
up to approximately 10Tx. In the Kondo regime it also exhibits 2 maximum at T == Tk
whereas in the mixed valency regime there is only a shoulder at kgT ~ A, and similarly
in the empty orbital regime. The inclusion of weak non-resonant scattering has little effect
on ¢{T).

3.3.4. Hall coefficient. Figure 25 shows the temperature dependence of the Hall coefficient.
This quantity exhibits a characteristic low temperature peak at T ~ Ty in the Kondo regime
but not in the mixed valency or empty orbital regimes. Universality for this quantity persists
only up to T =~ Tx. Here we have only considered the ordinary Hall effect and have shown
that this exhibits an anomaly at T ~ Tx. Another important contribution to the Hall
effect arises from skew scattering of conduction electrons. Up spin electrons are scattered
differently in a magnetic field from down spin electrons as a result of the splitting of the
Kondo resonance by the magnetic field. This contribution could be much more important
than that originating from the Lorenz term considered here, but its treatment is outside the
scope of the present work.

4. Discussion and conclusions

In this paper we have given a detailed description of the generalization of the numerical
renormalization group to the calculation of finite-temperature Green functions of the
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Figure 19. The effect of including non-resonant scattering on the thermopower it the Kondo
regime €p = —2A, For alarge enough non-resonant phase shift #; > 0.042x the broad minimum
at T =~ A changes sign. The low-energy maximum is at T =~ Tk /3.

Anderson model. The method was applied to obtain the single-particle spectral densities and
transport properties of the Anderson model in the strong-correlation limit U/7r A 3> 1 fora
range of temperatures and parameter regimes, as well as the occupation number and specific
heat. We distinguish three parameter regimes in the limit of strong correlation. The Kondo
regime, €g <€ —A, np = 1, characterized by a low energy scale kg Tp = kp Tk, the valence
fluctuation regime, —A < € € 0, 0.3 € ng < 0.8, characterized by a low-energy scale
kpTo = A, and the empty orbital regime, €5 2 A, ng < 0.3, characterized by an energy
scale kg Ty ~ é ~ €. We also distinguish three temperature ranges, T < Ty corresponding
to the Fermi liquid regime, T » Ty corresponding to the high temperature perturbative
regime and T ~ T corresponding to the cross-over region. A consistent picture of the
thermodynamics, spectral densities and transport coefficients emerges from the numerical
renormalization group calculations in these different regimes.

The calculations of the single-particle excitation spectrum show that at low temperatures
the spectral function in the Kondo regime is characterized by a Kondo resonance of
negligible spectral weight, centred around €7, and two atomic like resonances at €p and
€y -+ U, which carry most of the spectral weight. That below the Fermi level at €5 contains
most of the screening charge while that above at €y -+ U is empty. This picture is well
known and emerged very clearly in the finite-order perturbation calculations of Yamada
[31]). Using the numerical renormalization technique we have been able to calculate it more
accurately and obtain the correct exponential dependence of the width T on g and U,
and also to describe the high-temperature regime, where there are corrections that depend

logarithmically on T.
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Figure 20. The effect of including non-resonant scattering on the thermopower S(T) in the
mixed valency regime ep = 0. There is only a broad maximum at T =~ A /3, which disappears
when the non-resonant phase-shift ;; is increased.

The spectral function for valence fluctuators is characterized by two peaks only: 2
partially filled one at the renormalized position € > er and an empty onec at § + U7, In
the empty orbital regime the low-temperature spectral function in the strong-coupling limit
is just an empty virtual bound state. The characteristic low-energy scale for the spectral
function is set by Ty. These features of the spectral density are fully consistent with the
Fermi liquid ground-state as revealed by the thermodyamics [2]. The Friedel sum rule, which
is a good test of the accuracy of the method at both high and low energies, was found to be
satisfied to within 3% accuracy in all parameter regimes. Increase of temperature leads to
a renormalization of the excitation spectrum and for T > T the spectral function changes
in a qualitative way [7]. At high temperatures the spectral function is characterized by two
atomic like peaks separated in energy by U, consistent with the thermodynamic properties,
which exhibit local moment behaviour. In the mixed valency and empty orbital regimes the
higher peak is strongly suppressed.

The transport coefficients for the Anderson model can be related to the transport
relaxation time by using linear response theory. This can be further related to the single-
particle spectral function, which allows us to discuss the transport coefficients in terms of
elementary excitations in the resonant channel. The characteristic low-energy scale of the
spectral function, Tp, defines the temperature scale for transport properties.

In the Kondo regime at low temperature, T <€ Ty = Tk, we showed that the transport
coefficients agreed with the predictions of Fermi liquid theory. For T < Tk, the localized
spins are screened and the transport currents relax via excitations in the local Fermi
liquid state formed by the Kondo screening mechanism. The transport coefficients were
characterized by power law dependences on T/ Tk (34)—(37) with universal coefficients for
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Figure 21. The thermal conductivity {« (T)/ T)/(x(T)/T)p plotted versus y T. The solid lines
with symbols are for the Kondo regime. The mixed valency cases are ¢g = —A (long dashed)
and €g = O (dashed), and eg = —A {dotted) is the empty orbital case. (The single point for the
symmetric case that falls off the universal curve is due to insufficient accuracy of the integrations
at that particular temperature.)
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Figure 22. The linear coefficient o of the thermal conductivity, ¢ = («(T)/T), versus
if sinz(nrng,'Z} (see table I for the values).
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Figure 23. The T2 coefficient of x(T)/e T in the Kondo regime (see table 1 for the values).
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Figure 24. The Lorenz number ratio L(T)/Lg where Lg = r2ky/3e versus ¥ T.

appropriately scaled quantities. The numerical results for the T2 term of the resistivity
and the T2 term of the thermal conductivity in the symmetric case agreed remarkably well
with the analytic values deduced from Fermi liquid theory, With increasing asymmetry the
numerical results indicate that these coefficients change only slightly for ng > 0.8. The
thermopower shows universal behaviour for T < Tx when rescaled by its zero-temperature
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Figure 25. The Hall coefficient R(T)}/Riye versus ¥ T where Ryr = —1/nlelc.

slope [26]. Universality was found to extend up to at least 107y for the resistivity and
thermal conductivity but only up to Tx for the Hall coefficient. The transport properties in
this regime are understood in terms of excitations in the strongly renormalized Fermi liquid
ground state. On increasing temperature through the cross-over region T >~ Ty logarithmic
terms become important for the resistivity and these are clearly seen for T > Tx. The
thermopower changes sign, a result of the disappearance for T > Ty of the Kondo resonance
in the single-particle spectral density. There is also a minimum in the Hall coefficient at
T ~ Tk. In the high temperature perturbative regime, T > T, the speciral density consists
of two peaks, the occupancy ng approaches unity and the transport properties are those of
electrons coupled weakly to local spins. The thermopower develops a broad minimum at
ksT =~ A due to a shift of spectral weight from the peak below the Fermi level to that
above as charge fluctuations become important.

In the mixed valency and empty orbital regimes the transport coefficients at low
temperature T < Tp again reflect the relaxation of the transport currents via the excitations
in the renormalized local Fermi liquid ground state. However, since A 3 kpTg, these
renormalizations of order 1/T; are smaller than those for the Kondo case. The low
temperature transport coefficients again have power law dependences on T/T;, but the
coefficients are non-universal and depend strongly on the occupation of the localized level
ng.

Finally, we investigated the effects of non-resonant scattering of conduction electrons
on the temperature dependence of the transport properties. A general expression for the
transport time in the presence of such scattering was derived, which shows that the resulting
interference effects between the resonant and non-resonant channels are not negligible,
Hence, to relate the transport coefficients of the Anderson model to the experimental data
on dilute alloys one should take into account the non-resonant scattering. For example,
the overall shape of the thermopower curves calculated for the Anderson model with two
scattering channels resembles quite strikingly the experimental data. The interference effects
between resonant and non-resonant scattering channels led to a strong dependence of the sign
of the thermopower on the non-resonant phase shift. This type of effect could be important
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for systems with ng close to unity or for systems with a Kondo resonance approximately
symmetric about the Fermi level. Doping such systems with non-magnetic impurities could
lead to the above type of interference effects, making the sign of the thermopower sensitive
to the local environment. Such effects have been observed [41]. In the symmetric Kondo
regime the inclusion of non-resonant scattering was important to obtain the non-vanishing
enhanced thermopowers for half filled systems (the np = 1).

To summarize, we have shown that the numerical renormalization group method
allows a unified description of the transport, thermodynamic and spectral properties of
the Anderson model in the strong correlation limit. The different features below and above
the characteristic scale Ty reflect differences in the structure of the excitation spectrum at
high and low temnperatures. The NRG method presented here could be used to provide further
insights into the behaviour of the Anderson model. For instance, the results for the spectral
density could be used to deduce the spin and charge densities induced in the conduction
electrons at arbitrary distances from the impurity [42]. The interference effects for the
transport properties could also be studied for two Kondo (spin -’2-) impurities or for the case
of the Kondo effect in the [ = 0 channel and a virtual bound state in the ! = 1 channel. This
would be relevant to rare earth systems in which there is an excited crystal electric field
level close to the Kondo ground state. There are many other similarly interesting physical
situations that occur in particular materials. They could be modelled and a broad range of
physical properties calculated via this one technique to compare with experiment.
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Appendix A. Derivation of the transport time in the presence of non-resonant scattering

The transport time for scattering from a dilute concentration, #; < 1, of magnetic impurities
described by the Hamiltonian (1) can be obtained by examining the Kubo expression for
the conductivity o (T")

.1
o(T) == lim =~ Im (@) (Al

where the current—current correlation function M (iw) = —(1/3V) fﬂﬂ et (T, 5(t)§(0)) and

the current operator is that for free electrons § = —(e/m) 3", kc;‘mck,. The diagrammatic
representation of Il(iw,) is shown in figure Al. In the absence of non-resonant scattering
the vertex corrections vanish identically [13] in the dilute Limit leaving just the (dressed)
bubble diagram IT,. In terms of the dressed conduction electron Green function G(k, @)
this is

2¢? 1
Ho(iw) = 3m‘;V ij kFE > Gk, iwy + )Gk, iwy). (A2)
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Here we evaluate the conductivity including the vertex corrections since these give rise to
interference terms between the / = 0 and / = 1 channels. The conductivity is given by [28]

1 oo s _af . . . .
o(T) = - f_m (?) [P(e — 15, € +i8) — Re[P(e + 14, € + i8)}]) de (A3)

where the singular part behaving like 1/n; originates from the first term with P(e+i8, ¢ —ié)
[28]. The latter is given in terms of the conduction electron Green function G(k, €) and
vector vertex function I by

2¢? 1
P(e —id, e +i8) = 3_:12? D Gk, e +i8)G(k, e —id)k-T(k,e —is, e +i6). (A4
k

The vertex function I' satisfies the following equation:

d’k’
'k, e—i8, €+i8) = k+ ml"(k'. €—id, €+i8) Wy (e —i8, € +i8)G (K, € —18)G (e +19)
(A5)

where W is the irreducible vertex.

k, +® k.o, +® kK’, o + o

k, @ k, m, k’, o

Figure Al. The diagrammatic representation of the current—current correlation function I (iw).
The solid lines represent full conduction electron Green functions and I is the two-particle
scattering vertex.

To solve this equation we introduce a scalar vertex function y; defined by '(k, € —
id,€ +18) = k yi(k,€) and note that the Green function product in (AS) is simply
A(k, €)/1E(k, €)| where A(k, €) is the spectral density and %'(k, €) the imaginary part of
the self-energy of the conduction electrons. In the dilute limit, n; — O, we also have that
[28] Wi (e — i8,€ +18) — n;Try (e — i8)Tpp(€ + i8), where T is the energy dependent
T-matrix, |1k, €x)| — il Im Typr] and A(K', €) — 27w8(e — €x). The resulting equation
for the scalar vertex function after some algebra becomes

m sin B’ cos 0'8(€ — €y )T (€ — 18) Tpp(e + i8N (K, €)
k,e) =1+ — [ depdd’'y/2
nik,e)=1+= / €k mew [Tm Trp (€ + 18)|
(A6)

where 8’ defined by cos(8") = k-k'/k? is the angle between incoming and scattered k-states
and a free electron density of states has been used to rewrite the integrals. The T-matrix
in the denominator of (A6) is for forward scattering only so it is independent of 6’ and
can therefore be taken outside the integral and evaluated at k¥’ = k (note the § function in
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(A6)). The scalar vertex function (k' ¢} is also independent of angle and can also be
taken outside the integral (evaluated at " = k). Hence the closed expression

mk

Iy
key=1 .. S—
Nk = T Tt + )]

yilk, €) (A7)

is obtained with sclution

| Im T (ex + i)

k, €)= - . A8
) = T Tyt + 0] — Gk /)T, A9
In the above expressions [, given by
.4
I = f do’ sin & cos 8Ty (€x. — 18) Ty (x + 18) (AD)
0

contains the interference effects.
Substituting the scalar vertex function 3, from (A8) into the expression for P(e —iJ, €+
i8) (using the previously quoted expression for the Green function product) gives

P —is, ¢ +i8) = 29 - Zsz(k Ok, )/ Elk, €) (A10)

and substituting the latter into the conductivity formula (AI) gives for the transport time
the expression

ek, 7)™ = 2n(| Im T (s + 18)] — ZL:I::)- (A1)
The first part of this expression is just the usual result for s-wave scattering only and the
second part is the contribution from interference effects between the resonant ! = 0 channel
and the non-resonant channels. To evaluate (A9) and (All) we need the T-matrix, This
can be obtained for the Hamiltonian (1) by aplying the equation of motion method to the
conduction electron Green function Gy, = ({Cko; Cpp ). This gives

Gro (@ +18) = Gl (@ +18) + Gl (@ + i) Tiw (@ + i8) Gy, (w + i8) (A12)
where

T (@ +18) = Vo Go(ew + i8)Vor + 3, Viek G (@ + i8) Vi (A13)
I=1m

G?:k, . is the unperturbed conduction electron Green function and G),! = 0,1,... are the
local Green functions for the I =0, 1, ... channels respectively. The hybridization matrix
elements V. have the angular dependence Vime = (kIV|, m} ~ V¥ (%) so the T-
matrix has the form

Tt (@ +18) = Y (20 + 1) P (cos(@) Vs Gu(e + i8) Vi (Al4)
I=0
= Vo Golw + i8) Vorr + 3 cos(@N Vi Gi (@ + i) Vig -+ ... (Al15)
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where 3 ¥y (1) Yin (S} ~ (21 + 1) Pi(cos(8”)) has been used and ¢’ = k- k'/k?. The T
matrix has an explicit dependence on the angle 6’, which gives rise to interference effects
between the resonant and non-resonant channels when substituted into the expression for
the transport time (Al1). These interference effects arise in the expression for J; as cross
terms involving G3G1 + GoG}. On carrying out the §' integrations in (A9) and expressing
the non-resonant Green function Gi{w) in terms of a corresponding phase shift (@) we
arrive at the formula for the transport time of the multi-channel Anderson impurity model:

i

_ 1 Re Golw, T)
w,T) ™o, T)

Im Gplw, D)

[cos 25 — sin 2m:| + fa. (A16)

The resonant part of the transport time, w(w, T') is given by the usual T matrix expression
in the absence of the interference effects

o Apolew, T) = —A Im Golw, T)/m (AlT)
where A is the unrenormalized width of the I = 0 resonance and Go(w, T) is the I = 0
Green function, which describes the many-body effects. The analysis here was for the
electrical conductivity. The same transport time (A16) is found by repeating this analysis
for the other current-current correlation functions. (In the above expressions for the inverse
transport times, a constant factor 2m;/N(0), where N (0) is the unperturbed conduction
electron density of states at the Fermi level, has been omitted).

Appendix B. The numerical renormalization group method

The following continuum version for the resonant part of (1) is useful for introducing the
logarithmic discretization approximation [2):

+1 +1

H= eocgaco,, + Unorngy + Vo | dk(c,tacm + cga Cior) + kc,tack, dk. B
. -1

In obtaining this from the resonant part of (1), a partial wave expansion for the conduction
states around the impurity has been used and the Hamiltonian has been written in the energy
representation. The approximation has been made that A(w) =m 3, Vor|%8(w — &) = A
is independent of frequency so that only s-wave partial wave states couple to the impurity
(with strength Vg = +/A/a N{er)). All energies are measured refative to the half bandwidth
D = 1 and we use the convention that repeated spin indices are summed over (full details of
the above may be found in [2]). The continuum conduction band [—1, 1] is now discretized
as shown in figure B1 and a new set of basis states for the conduction electrons is introduced
in each interval £[A~C+D A~"] using the following wavefunctions:

A"2/D(1 — 1/A)/¥]eienpk for A" <tk < A"

inw -l ®2)

otherwise,

Here p is a Fourier harmonic index and @, = 2w A®/(1 — A™!). The operators cpo can
then be expanded in terms of new operators aupg, by labelled by the interval # and the
harmonic index p

Cho = Y {anpo ¥ty + brpa VWil (B3)
np
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In terms of these operators, the Hamiltonian {B1) becomes {2]

o0
H = eqch,cop + Unopnioy + Vo(1 = A™HY2 S~ A~ ((al, + blo, Yeos + b, (@nto + Boo))
n=0

(1 + A~ 1) Z A_n(anpcranp" blpo'bnpa)

(1— -h . e o 1]t
3" Y ATl g — Bl b PTPNESAT (BY)
n pEp

The coupling of the local state ¢y, to only the p = O harmonic is a consequence of
the assumption that the hybndization matrix elements are independent of energy. Hence
the conduction electron orbitals a,p, by, for p # O only couple to the impurity state o,
indirectly via their coupling to the ayg, by in the last term of (B4). This coupling is weak,
being proportional to (1 — A™'), so these states may be expected to coatribute little to the
impurity properties compared to the p = 0 states. This is indeed the case as can be seen in
figure B2, where the probabiiity density in real space of the wave packet states ¥,,(k) is
shown. It can be seen that the p > 0 orbitals are localized at increasing distances from the
impurity, whereas the p = 0 orbitals overlap strongly with the impurity. This together with
their weak coupling to the impurity ensures that they can be neglected in calculating local
impurity properties. This logarithmic discretization approximation has been shown to give
rapidly convergent resuits (as A — 1) for thermodynamic averages, the deviations away
from the continuum limit, A = 1, being proportional to e=""/1(A) [1,2). The approximation
amounts to approximating the continoum conduction band Hamiltonian, H, by a discrete
one:

1
He o(1+ A7) 3 A™™alg,n0 — Blg, baca)- (B5)
n
Consequently a discrete approximation to the Anderson model is obtained:

o
H = ey, cos + Unopnoy + Vo1 — A™YY2 D" A= ((a}, + bl Yoo + €l (@ne + bao))

n=0

1
+ 50+ AT) Y A @ ans — bl bro) (B6)
n

where the p index has now been dropped since only p = 0 states are included. This discrete
Hamiltonian is more convenient for a numerical treatment,

L | Ly ) L J

_AO —.A.-! _A-z +A_2 +A-1 +A0

Fipure Bl. The conduction band [—1.+1] logarithmically discretized with discretization
parameter A > 1.
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Figure B2, The normalized conduction electron orbitals Ikpn,&,,j,;.(.v)l2 as a function of distance
ker from the impurity forn =5and p=0,1,...,5.

The next step is to convert the discrete Hamiltonian (B6) into a linear chain form suitable
for an iterative diagonalization starting from a small chain and diagonalizing sucessively
longer chains by adding a site or energy shell at each stage. If we define a new local

conduction electron orbital by |00} = fg,{vac) where
t _ l A-Iygi2 —-nf2: 1 1
foo =[50 = A7)] ZA “*al, +bl,) ®7)
then the Lanczos algorithm can be used with starting vector |Oo} to iri-diagonalize H:

Zenf,w—fna -+ Z)"ﬂ(fn+la'f"5 +fno-fn-!-la) (BS)
n=0
where €,, Ap, 2 = 0, 1,... are the site and hopping energies respectively. For a half filled
symmetric conduction band the €, are all zero and Wilson has obtained the expression
Ap = %(1 + ATHAT2E, | where &, = £,(A) — 1 for n 3> 1. This converts (B6) into a
semi-infinite chain with the impurity at the origin coupled to the local conduction state |0o'}
via the hybridization Vj (re-scaled to keep |0o > normalized)

1 _ ]
H = éoch,cas + Unogoy -+ Vo(Fgycar + HCY+ 50+ A7) Y Ml ffy o fao + Fly i)
n=0

1
= lim S+ ATHYA-W-U2g, (B9)
N=1
Hy = AW Ho ot By + Y A™28,(f 1, foo + [l fasio)l. (B10)

n=0
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In (B10) we have defined a sequence of rescaled Hamiltonians Hy whose smallest term is
always of order unity (the bare parameters €g, I/, Vj are also rescaled by the factor 5’,(1 +
A™1)). The procedure is now to diagonalize this sequence of Hamiltonians iteratively and
extract the spectrum and eigenstates on successively lower energy scales wy ~ A~(V-1/2
The procedure starts by diagonalizing the impurity part, Ay = enc&,coq + Ungyng of (B9)
and then adding the coupling to the local conduction electron orbital Vo( fJacn., + HC).
Successive energy shells A, ( fJ tlofne + f,L Jerie)on = 0,1, ... are then added and the
resulting Hamiitonian diagonalized to give the many-body eigenvalues Ep” and eigenvectors
ip}n of the corresponding shell or cluster. The total number of electrons, N, total spin,
S, and z-component S,. of total spin, are conserved quantities and can be used to label the
eigenstates together with an index r =1, R‘Q.’c s Where R#; g 18 the dimension of the subspace
(NeS). If Hy has been diagonalized, Hy = 3_y g5, EN X 55, N.55,r» then from (B10)
the matrix for Hy.4; can be obtaired from

Hyy = AV2HYy +§N(f,:r+1u-f-’\’o' + f;afnf-na)» (B11)

The basis used for Hyy is the product basis |p, i} of eigenstates, |p} = |N.85,r), of Hy,
and states |i) from site N 4 1 (i.e. |i) = [0}, ] 1),] L)1 14}). In this basis the matrix
elements of Hy. are

{p.i|Hnsilg, J) = AV28,48: i EN + En((p, i1 fit 1o Fvels ) + (B0 0V, Fraielg, 7))
= A28, .8 ;EY + En (= 1)V (i1 11515001 o la)
+ (Pl ) Gl el i) ®12)

where fy+i1, have been commuted past the eigenstates | p), |g) with a sign change (—~1)"«
depending on the number of electrons, N, , = N,,p, in these states. Since Hy is already
diagonalized the matrix elements {p|fys|g} can be calculated as follows. The unitary
transformation between the eigenstates of Hy and the product basis is known and is given
by

Py =D Un(p, ridlrin-sli) (B13)

where Uy (p, ri) is the matrix of eigenvectors of Hy, [r}y—1 denotes an eigenvector of the
previous cluster (N — 1) and [i) is one of the four states given above, but for site N (not
N + 1). Hence the required matrix elements are given by

(Plfneladn = 3 3 Ukip, ridUn(p, r'iNGil(r| fualr)li)

i oo

= Z Z U_.:’(ps ri)UN(q; r:i’)‘sf,r'("“'l)N"’(!.]fNo.Ii"} (B14)

rt i

which involves only known expressions. The matrix elements {i|fy+10/7} in (B12) are
also known so the matrix of Hy;q can be set up in terms of the eigenvalues and matrix
elements in (B14). Hy,; can then be diagonalized and the procedure repeated to obtain the
spectrum on successively lower energy scales, wy+2, @y+3, - . ., Where wy o~ DA~WN-D72
is the smallest scale in Hy. In practice since the number of many-body states in Hy
grows as 47 it is not possible to retain all states after about N = 7 (even after symmetry
has been used to reduce the size of the matrices). For N > 7 only the lowest 1000
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or so states of Hy are retained. The truncation of the spectrum in Hy restricts the
reliable range of excitations @ to wy < @ € Kwy where K is a constant dependent
on A (K = 10 for A = 3). The lower excitations are calculated more reliably in
successive iterations, whilst information on the higher excitations is contained in previous
iterations, The eigenvalues are used to calculate the partition function Zy(By = 1/ksTy)
and free energy F(Ty) = —kgIn(Zy(Ty)) for the total system at a decreasing sequence of
temperatures Ty = wy/kg ~ DA~WN-D2 N =0,1,.... The thermodynamic properties
are then extracted by first subtracting out the conduction electron contribution to the free
energy, Fo(Ty) [1,2]. The specific heat is then given by the second derivative of the
impurity free energy, Finp(T) = F(T) — Fo(T)

32 Fimp

cMy=-T .
) 372

(B15)
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